

Embedded System Development & Applications

Lec 06: Quantization

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: October 14, 2024)

2024 Fall

These slides contain/adapt materials developed by

- Hardware for Machine Learning, Shao Spring 2020 @ UCB
- 8-bit Inference with TensorRT
- Amir Gholami et al. (2021). "A survey of quantization methods for efficient neural network inference". In: arXiv preprint

Overview

- 1 Integer & Fixed-Point Number
- Quantization Overview
- 3 Quantization First Example
- 4 Post Training Quantization (PTQ)
- **5** Quantization Aware Training (QAT)

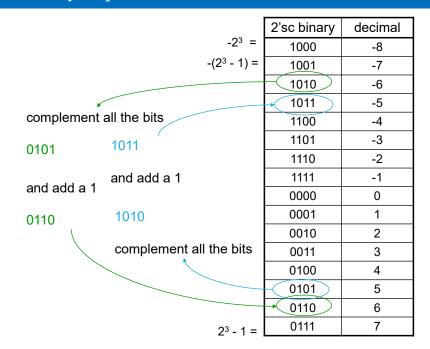
Integer & Fixed-Point Number

Unsigned Binary Representation

Hex	Binary	Decimal
0x00000000	00000	0
0x00000001	00001	1
0x00000002	00010	2
0x00000003	00011	3
0x00000004	00100	4
0x00000005	00101	5
0x00000006	00110	6
0x00000007	00111	7
0x00000008	01000	8
0x00000009	01001	9
0xFFFFFFC	11100	2 ³² - 4
0xFFFFFFD	11101	2 ³² - 3
0xFFFFFFE	11110	2 ³² - 2
0xFFFFFFF	11111	2 ³² - 1

	2 ³¹	230	229		23	2 ²	21	20	bit weight
	31	30	29		3	2	1	0	bit position
	1	1	1		1	1	1	1	bit
1	0	0	0		0	0	0	0	- 1
				2 ³² -	1				

Signed Binary Representation



Fixed-Point Arithmetic

- Integers with a binary point and a bias
 - "slope and bias": $y = s^*x + z$
 - Qm.n: m (# of integer bits) n (# of fractional bits)

$$s = 1, z = 0$$

$$s = 1, z = 0$$
 $s = 1/4, z = 0$ $s = 4, z = 0$

$$s = 4, z = 0$$

$$s = 1.5, z = 10$$

2^2	2^1	2^0	Val	2^0	2^-1	2^-2	Val	2^4	2^3	2^2	Val	2^2	2^1	2^0	Val
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.5*0 +10
0	0	1	1	0	0	1	1/4	0	0	1	4	0	0	1	1.5*1 +10
0	1	0	2	0	1	0	2/4	0	1	0	8	0	1	0	1.5*2 +10
0	1	1	3	0	1	1	3/4	0	1	1	12	0	1	1	1.5*3 +10
1	0	0	4	1	0	0	1	1	0	0	16	1	0	0	1.5*4 +10
1	0	1	5	1	0	1	5/4	1	0	1	20	1	0	1	1.5*5 +10
1	1	0	6	1	1	0	6/4	1	1	0	24	1	1	0	1.5*6 +10
1	1	1	7	1	1	1	7/4	1	1	1	28	1	1	1	1.5*7 +10

Catastrophic Cancellation

(a - b) is inaccurate when a >> b or a << b

Decimal Example 1:

- Using 2 significant digits
- Compute mean of 5.1 and 5.2 using the formula (a + b)/2:
- a + b = 10 (with 2 significant digits, 10.3 can only be stored as 10)
- 10/2 = 5.0 (the computed mean is less than both numbers!!!)

Decimal Example 2:

- Using 8 significant digits to compute sum of three numbers:
- (11111113 + (-11111111)) + 7.5111111 = 9.5111111
- 11111113 + ((-111111111) + 7.51111111) = 10.0000000

Catastrophic Cancellation

Catastrophic cancellation occurs when

$$\left| \frac{[\text{round}(x) \times \text{round}(y)] - \text{round}(x \times y)}{\text{round}(x \times y)} \right| >> \epsilon$$

00061

Quantization Overview

Quantization in DNN

Quantization:

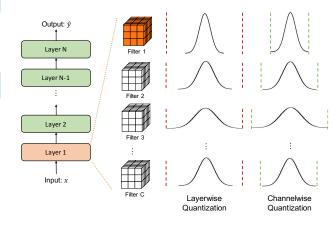
$$Q(r) = Int(r/S) - Z$$

Dequantization:

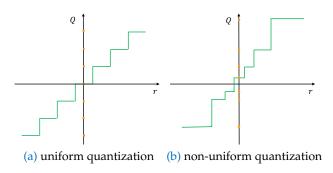
$$\hat{r} = S(Q(r) + Z)$$

Granularity:

- Layerwise
- Groupwise
- Channelwise

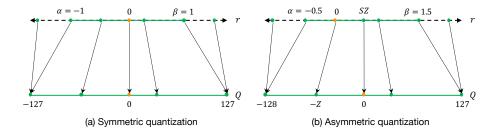


Uniform vs. Non-Uniform



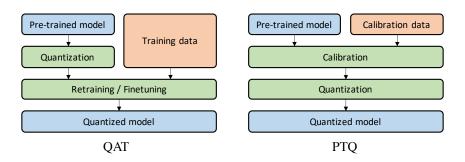
- Real values in the continuous domain *r* are mapped into discrete
- Lower precision values in the quantized domain *Q*.
- Uniform quantization: distances between quantized values are the same
- Non-uniform quantization: distances between quantized values can vary

Symmetric vs. Asymmetric



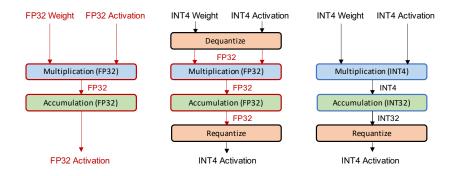
- Symmetric vs. Asymmetric: Z = 0?
- Fig. (a) Symmetric w. restricted range maps [-127, 127],
- Fig. (b) Asymmetric w. full range maps to [-128, 127]
- Both for 8-bit quantization case.

QAT and PTQ



- quantization-aware training (QAT): model is quantized using training data to adjust parameters and recover accuracy degradation.
- post-training quantization (PTQ): a pre-trained model is calibrated using finetuning data (e.g., a small subset of training data) to compute the clipping ranges and the scaling factors.
- Key difference: Model parameters fixed/unfixed.

Simulated quantization vs Integer-Only quantization



Left: Full-precision

Middle: Simulated quantization

Right: Integer-only quantization

Backend Support for Quantization Deployment

Hardware Support

- Nvidia GPU: Tensor Core support FP16, Int8 and Int4
- Arm: Neon 128-bit SIMD instruction: 4×32 bit or 8×16 bit up to 16×8 bit
- Intel: SSE intrinsics, same as above
- DSP, AI Chip

Some common architectures:

- For CPU: Tensorflow Lite, QNNPACK, NCNN
- For GPU: TensorRT
- Versatile Compiler such TVM.qnn

Quantization – First Example

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Do we really need bias?

Two matrices:

```
A = scale_A * QA + bias_A
B = scale_B * QB + bias_B
```

Let's multiply those 2 matrices:

```
A * B = scale_A * scale_B * QA * QB +
scale_A * QA * bias_B +
scale_B * QB * bias_A +
bias_A * bias_B
```


Do we really need bias?

Two matrices:

```
A = scale_A * QA + bias_A
B = scale_B * QB + bias_B
```

Let's multiply those 2 matrices:

Do we really need bias? No!

Two matrices:

```
A = scale_A * QA
B = scale_B * QB
```

Let's multiply those 2 matrices:

```
A * B = scale_A * scale_B * QA * QB
```


Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

- Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]
 - If use [-127, 127], $s = \frac{127}{\alpha}$
 - Range is symmetric
 - 1/256 of int8 range is not used. 1/16 of int4 range is not used
 - If use full range [-128, 127], $s = \frac{128}{\alpha}$
 - Values should be quantized to 128 will be clipped to 127
 - Asymmetric range may introduce bias

EXAMPLE OF QUANTIZATION BIAS

Bias introduced when int values are in [-128, 127]

$$A = \begin{bmatrix} -2.2 & -1.1 & 1.1 & 2.2 \end{bmatrix}, B = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.3 \\ 0.5 \end{bmatrix}, AB = 0$$

8bit scale quantization, use [-128, 127]. $s_A = \frac{128}{2.2}$, $s_B = \frac{128}{0.5}$

$$\begin{bmatrix} -128 & -64 & 64 & 127 \end{bmatrix} * \begin{bmatrix} 127 \\ 77 \\ 77 \\ 127 \end{bmatrix} = -127$$

Dequantize -127 will get -0.00853. A small bias is introduced towards -∞

EXAMPLE OF QUANTIZATION BIAS

No bias when int values are in [-127, 127]

$$A = \begin{bmatrix} -2.2 & -1.1 & 1.1 & 2.2 \end{bmatrix}, B = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.3 \\ 0.5 \end{bmatrix}, AB = 0$$

8-bit scale quantization, use [-127, 127]. s_A =127/2.2, s_B =127/0.5

$$\begin{bmatrix} -127 & -64 & 64 & 127 \end{bmatrix} * \begin{bmatrix} 127 \\ 76 \\ 76 \\ 127 \end{bmatrix} = 0$$

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE

Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

MATRIX MULTIPLY EXAMPLE

Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale = 127/1=127) for the second

$$\begin{pmatrix} -98 & 14 \\ -17 & 41 \end{pmatrix} * \begin{pmatrix} 44 \\ -65 \end{pmatrix} = \begin{pmatrix} -5222 \\ -3413 \end{pmatrix}$$

MATRIX MULTIPLY EXAMPLE

Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale = 127/1=127) for the second

$$\begin{pmatrix} -98 & 14 \\ -17 & 41 \end{pmatrix} * \begin{pmatrix} 44 \\ -65 \end{pmatrix} = \begin{pmatrix} -5222 \\ -3413 \end{pmatrix}$$

The result has an overall scale of 63.5*127. We can dequantize back to float

$$\binom{-5222}{-3413} * \frac{1}{63.5 * 127} = \binom{-0.648}{-0.423}$$

REQUANTIZE

Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second

$$\begin{pmatrix} -98 & 14 \\ -17 & 41 \end{pmatrix} * \begin{pmatrix} 44 \\ -65 \end{pmatrix} = \begin{pmatrix} -5222 \\ -3413 \end{pmatrix}$$

Requantize output to a different quantized representation with fp range [-3, 3]:

$${\binom{-5222}{-3413}} * \frac{127/3}{63.5 * 127} = {\binom{-27}{-18}}$$

Post Training Quantization (PTQ)

200
11.00
802
735 O.
W-200

Greedy Layer-wise Quantization¹

19/30

• For a fixed-point number, it representation is:

$$n = \sum_{i=0}^{bw-1} B_i \cdot 2^{-f_l} \cdot 2^i,$$

where bw is the bit width and f_l is the fractional length which is dynamic for different layers and feature map sets while static in one layer.

• Weight quantization: find the optimal f_l for weights:

$$f_l = \arg\min_{f_l} \sum |W_{float} - W(bw, f_l)|,$$

where *W* is a weight and $W(bw, f_l)$ represents the fixed-point format of *W* under the given bw and f_l .

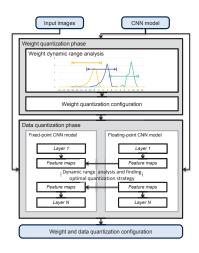
¹Jiantao Qiu et al. (2016). "Going deeper with embedded fpga platform for convolutional neural network". In: *Proc. FPGA*, pp. 26–35.

Greedy Layer-wise Quantization

Feature quantization: find the optimal f_l for features:

$$f_l = \arg\min_{f_l} \sum |x_{float}^+ - x^+(bw, f_l)|,$$

where x^+ represents the result of a layer when we denote the computation of a layer as $x^+ = A \cdot x$.

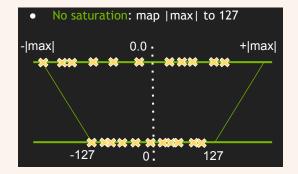


Dynamic-Precision Data Quantization Results

Network	VGG16								
Data Bits	Single-float	16	16		8	8	8	8	
Weight Bits	Single-float	16 8			8	8	8	8 or 4	
Data Precision	N/A	2-2	2 ⁻² Impo		ossible 2 ⁻⁵ /2 ⁻¹		Dynamic	Dynamic	
Weight Precision	N/A	2-15	2-7	2-7 Impossib		2-7	Dynamic	Dynamic	
Top-1 Accuracy	68.1%	68.0%	53.0%	Impossible		28.2%	66.6%	67.0%	
Top-5 Accuracy	88.0%	87.9%	76.6%	Impossible 4		49.7%	87.4%	87.6%	
Network		CaffeNe	et			VG	G16-SVD		
Network Data Bits	Single-float	CaffeNe	et 8		Single		G16-SVD 16	8	
	Single-float				Single-	float		8 8 or 4	
Data Bits	- U	16	8		U	-float -float	16	-	
Data Bits Weight Bits	Single-float	16 16	8 8 c Dyna	ımic	Single	-float -float A [16 16	8 or 4	
Data Bits Weight Bits Data Precision	Single-float N/A	16 16 Dynamic	8 8 c Dyna	mic	Single-	-float -float A [16 16 Dynamic	8 or 4 Dynamic	

Industrial Implementations – Nvidia TensorRT

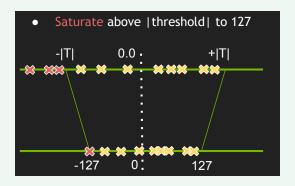
No Saturation Quantization – INT8 Inference



- Map the maximum value to 127, with unifrom step length.
- Suffer from outliers.

Industrial Implementations – Nvidia TensorRT

Saturation Quantization – INT8 Inference



- Set a threshold as the maxiumum value.
- Divide the value domain into 2048 groups.
- Traverse all the possible thresholds to find the best one with minimum KL divergence.

Industrial Implementations – Nvidia TensorRT

Relative Entropy of two encodings

- INT8 model encodes the same information as the original FP32 model.
- Minimize the loss of information.
- Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative entropy or information divergence).
 - *P*, *Q* two discrete probability distributions:

$$D_{KL}(P||Q) = \sum_{i=1}^{N} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

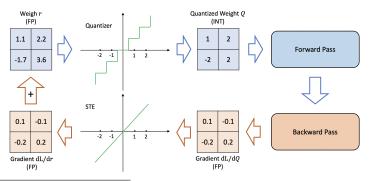
 Intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Quantization Aware Training (QAT)

QAT: Weight

Straight Through Estimator (STE)²

- Forward integer, Backward floating point
- Rounding to nearest



²Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). "Estimating or propagating gradients through stochastic neurons for conditional computation". In: *arXiv preprint arXiv:1308.3432*.

Better Gradients

Is Straight-Through Estimator (STE) the best?

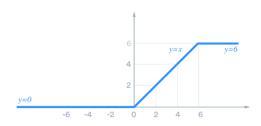
- Gradient mismatch: the gradients of the weights are not generated using the value of weights, but rather its quantized value.
- Poor gradient: STE fails at investigating better gradients for quantization training.

QAT: Activation

PArameterized Clipping acTivation (PACT)³

- Relu6 → clipping
- threshold → clipping range in quantization
- range upper/lower bound trainable

$$y = PACT(x) = 0.5(|x| - |x - \alpha| + \alpha) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$$



³Jungwook Choi, Zhuo Wang, et al. (2018). "Pact: Parameterized clipping activation for quantized neural networks". In: *arXiv* preprint *arXiv*:1805.06085.

PArameterized Clipping acTivation Function (PACT)⁴

- A new activation quantization scheme in which the activation function has a parameterized clipping level α .
- The clipping level is dynamically adjusted vias stochastic gradient descent (SGD)-based training with the goal of minimizing the quantization error.
- In PACT, the convolutional ReLU activation function in CNN is replaced with:

$$f(x) = 0.5 (|x| - |x - \alpha| + \alpha) = \begin{cases} 0, & x \in (\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$$

where α limits the dynamic range of activation to $[0, \alpha]$.

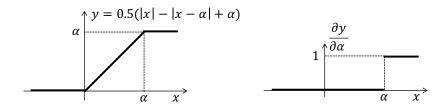
⁴Jungwook Choi, Swagath Venkataramani, et al. (2019). "Accurate and efficient 2-bit quantized neural networks". In: *Proceedings of Machine Learning and Systems* 1.

PArameterized Clipping acTivation Function (PACT)

• The truncated activation output is the linearly quantized to *k*-bits for the dot-product computations:

$$y_q = \text{round} \left(y \cdot \frac{2^k - 1}{\alpha} \right) \cdot \frac{\alpha}{2^k - 1}$$

- With this new activation function, α is a variable in the loss function, whose value can be optimized during training.
- For back-propagation, gradient $\frac{\partial y_q}{\partial \alpha}$ can be computed using STE to estimate $\frac{\partial y_q}{\partial y}$ as 1.



PACT activation function and its gradient.