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These slides contain/adapt materials developed by

¢ Hardware for Machine Learning, Shao Spring 2020 @ UCB
¢ 8-bit Inference with TensorRT

¢ Amir Gholami et al. (2021). “A survey of quantization methods for efficient neural
network inference”. In: arXiv preprint
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Overview

@ Integer & Fixed-Point Number
@ Quantization Overview

® Quantization — First Example

O Dost Training Quantization (PTQ)

@ Quantization Aware Training (QAT)
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Integer & Fixed-Point Number



Unsigned Binary Representation

Hex Binary | Decimal
0x00000000 | 0...0000 0
0x00000001 | 0...0001 1
0x00000002 | 0...0010 2
0x00000003 | 0...0011 3
0x00000004 | 0...0100 4
0x00000005 | 0...0101 5
0x00000006 | 0...0110 6
0x00000007 | 0...0111 7
0x00000008 | 0...1000 8
0x00000009 | 0...1001 9

OxFFFFFFFC | 1...1100 232._4
OxFFFFFFFD | 1...1101 2%2-3
OXFFFFFFFE | 1...1110 | 232_2
OXFFFFFFFF | 1...1111 232 -1

231280 229 28 22 21 20 bit weight

313029 ... 3 2 1 0 bitposition
111 .. 1111 bit
Ll

17000 0000 -1

L1

2%2 . 1

5/30



Signed Binary Representation

2’sc binary | decimal
2% = 1000 -8
«(2°-1)= 1001 -7
(w10 0] 6
//‘ L1011 ) -5
complement all the bits/ 1100 4
1101 -3
0101 1on 1110 -2
and add a 1 1111 -1
and add a 1 0000 0
0110 1010 0001 1
0010 2
complement all the bits 0011 3
0100 4
[ 0101 5
—~C o110 ) 6
23 1= 0111 7
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Fixed-Point Arithmetic

* Integers with a binary point and a bias
* “slope and bias”:y =s*x + z
* Qm.n: m (# of integer bits) n (# of fractional bits)

s=1,z=0 s=1/4,2=0 s=4,2=0 s=1.5,z=10
EIEIEINN EIEDENEN EICIEIN EE I
0 1.5%0 +10
0 0 1 1 0 0 1 1/4 0 0 1 4 0 0 1 1.5*1+10
0 1 0 2 0 1 0 2/4 0 1 0 8 0 1 0 1.5%2+10
0 1 1 3 0 1 1 3/a 0 1 1 12 0 1 1 1.5*3+10
1 0 0 4 1 0 0 1 1 0 0 16 1 0 0  1.5%4+10
1 0 1 5 1 0 1 5/4 1 0 1 20 1 0 1 15*5+10
1 1 0 6 1 1 0 6/a 1 1 0o 24 1 1 0  15%+10
1 1 1 7 1 1 1 7/ 1 1 1 28 1 1 1 1.5*7+10
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Catastrophic Cancellation

(a — b) is inaccurate whena >> bora << b
Decimal Example 1:
¢ Using 2 significant digits
¢ Compute mean of 5.1 and 5.2 using the formula (a + b) /2:

® a+ b =10 (with 2 significant digits, 10.3 can only be stored as 10)

® 10/2 = 5.0 (the computed mean is less than both numbers!!!)

Decimal Example 2:

¢ Using 8 significant digits to compute sum of three numbers:
e (11111113 + (—11111111)) 4+ 7.5111111 = 9.5111111
° 11111113 + ((—11111111) + 7.5111111) = 10.000000

8/30



Catastrophic Cancellation

Catastrophic cancellation occurs when

[round(x) x round(y)] — round(x x y)
>>€

round(x X y)
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Quantization Overview
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Quantization in DNN

Quantization:

Output: §

Filter 1

Q(r) =Int(r/S) — Z

=

VAN
AN

EEE |

Dequantization:

P =S(Q() +2)

Filter 2

)

Filter 3

JA\

Granularity: | Lo :
* Layerwise et x @ ! o |
Filter C Layerwise Channelwise
L4 Groupwise Quantization Quantization

* Channelwise
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Uniform vs. Non-Uniform

| ; ;
P

(a) uniform quantization (b) non-uniform quantization

Real values in the continuous domain r are mapped into discrete

® Lower precision values in the quantized domain Q.

Uniform quantization: distances between quantized values are the same

¢ Non-uniform quantization: distances between quantized values can vary
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Symmetric VS. Asymmetric

0 sz B=15
—127 0 —128 0 127
(@) Symmetric quantization (b) Asymmetric quantization

¢ Symmetric vs. Asymmetric: Z =07?

Fig. (a) Symmetric w. restricted range maps [-127, 127],

Fig. (b) Asymmetric w. full range maps to [-128, 127]

Both for 8-bit quantization case.
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QAT and PTQ

Pre-trained model [ Pre-trained model ] [ Callbratlon data ]
Training data $

Quantization [ Calibration ]
v ] v

[ Retraining / Finetuning ] [ Quantization ]
v ]

[ Quantized model ] [ Quantized model ]

QAT PTQ

® quantization-aware training (QAT): model is quantized using training data to adjust
parameters and recover accuracy degradation.

¢ post-training quantization (PTQ): a pre-trained model is calibrated using finetuning
data (e.g., a small subset of training data) to compute the clipping ranges and the
scaling factors.

¢ Key difference: Model parameters fixed /unfixed.
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Simulated quantization vs Integer-Only quantization

FP32 Weight FP32 Activation INT4 Weight  INT4 Activation INT4 Weight  INT4 Activation
I} i
[ Dequantize ]
|| E==a |
[ Multiplication (FP32) ] [ Multiplication (FP32) ] [ Multiplication (INT4) ]
| Fra2 | FPa2 1 NT4
[ Accumulation (FP32) ] [ Accumulation (FP32) ] [ Accumulation (INT32) ]
| FPa2 e
J [ Requantize ] [ Requantize ]
v
FP32 Activation INT4 Activation INT4 Activation

Left : Full-precision
Middle : Simulated quantization
Right : Integer-only quantization
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Backend Support for Quantization Deployment

Hardware Support

¢ Nvidia GPU: Tensor Core support FP16, Int8 and Int4
¢ Arm: Neon 128-bit SIMD instruction: 4x32bit or 8 x16bit up to 16x8bit
¢ Intel: SSE intrinsics, same as above

* DSP, Al Chip

Some common architectures:

¢ For CPU: Tensorflow Lite, QNNPACK, NCNN
¢ For GPU: TensorRT
¢ Versatile Compiler such TVM.qnn
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Quantization — First Example
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Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias




...
Do we really need bias?

Two matrices:

A = scale A * QA + bias A
B = scale B * OB + bias B

Let’s multiply those 2 matrices:
A * B = scale A * scale B * QA * QOB +
scale A * QA * bias B +

scale B * OB * bias A +
bias A * bias B



- @z

Do we really need bias?

Two matrices:

A = scale A * QA + biasA
B = scale B * OB + bias B

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB +

scale A * OA * hias B +
sga;e_g * OB * bjas_A +




...
Do we really need bias? No!

Two matrices:

A = scale A * QA
B = scale B * QOB

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB
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Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?



MINIMUM QUANTIZED VALUE

Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

If use [-127, 127], s =%

Range is symmetric

1/256 of int8 range is not used. 1/16 of int4 range is not used

If use full range [-128, 127], s = 128

a

Values should be quantized to 128 will be clipped to 127

Asymmetric range may introduce bias
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EXAMPLE OF QUANTIZATION BIAS

05
A=[-22 -11 11 22],B= 8-3 LAB =0
0.5

8bit scale quantization, use [-128, 127]. s

=128/2.2, 55=128/0.5

127
[- —-64 64 127] = —127
127

Dequantize -127 will get -0.00853. A small bias is introduced towards -«




EXAMPLE OF QUANTIZATION BIAS

A=[-22 -11 11 22],B= Igg‘ JAB =0

8-bit scale quantization, use [-127, 127]. s,=127/2.2, sg=127/0.5

127
[-127 —64 64 127]+
127

Dequantize 0 will get 0




MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)



MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)




MATRIX MULTIPLY EXAMPLE

(—1.54 0.22) . (0.35)

—0.65
—0.26 0.65 —0.51 ( 04 1)

—0.423
8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

The result has an overall scale of 63.5* . We can dequantize back to float
(—5222) . _ (—0.648)
—3413 63.5 * —0.423




REQUANTIZE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second
(—98 14) " A4 ) _ (—5222)
—-17 41 —65 —3413
Requantize output to a different quantized representation with fp range [-3, 3]:

_ 127/3 _
(_giﬁ) * 635%127 (—2573)




Post Training Quantization (PTQ)



Greedy Layer-wise Quantization?

¢ For a fixed-point number, it representation is:

bw—1

n=Y Bi-27.2,
i=0

where bw is the bit width and f; is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

¢ Weight quantization: find the optimal f; for weights:
fi = arg n}inz |Whoat — W(bw, f1)],
1

where W is a weight and W(bw, f;) represents the fixed-point format of W under the
given bw and f;.

!Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural
network”. In: Proc. FPGA, pp. 26-35. 19/30



Greedy Layer-wise Quantization

( mputimages ) ( onvmoder )
T T

¥

Weight quantization phase

Weight dyr!am\c range analysis
* Feature quantization: find the optimal f;
for features:

I Weight quantization configuration |

fi= axgmin 3, — 3 (bw. i), =

Data quantization phase

Fixed-point CNN model Floating-point CNN model
where x* represents the result of a layer L | Lo |
when we denote the computation of a | Lo depor— e ] L]

°  optimal quantization strateg 3
layerasx™ = A - x. [ b [ o]
¥ 3
| Layer N | | Layer N |
1
[ Weight and data quantization configuration ]
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Dynamic-Precision Data Quantization Results

Network

Data Bits 16 16 8 8 8

Weight Bits Single-float 16 8 8 8 8
Data Precision N/A 2= 22 Impossible 2521  Dynamic Dynamic
Weight Precision N/A 215 27 Impossible 27 Dynamic  Dynamic

Top-1 Accuracy 68.1% 68.0% 53.0%  Impossible  28.2% 66.6% 67.0%

Top-5Accuracy | 88.0% | 87.9%  766% Impossible 49.7%  87.4%
| Network | CaffeNet VGG16-SVD

Data Bits Single-float 16 8 Single-float 16 8
Weight Bits Single-float 16 8 Single-float 16 8or4
Data Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Weight Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Top-1 Accuracy 53.9% 53.9% 53.0% 68.0% 64.6% 64.1%
Top-5 Accuracy 77.7% 771% 76.6% 88.0% 86.7% 86.3%
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Industrial Implementations — Nvidia TensorRT

No Saturation Quantization — INT8 Inference

° o saturation: map |max| to 127

-|max| 0.0 ; +|max|
3903036362636 36202

Map the maximum value to 127, with unifrom step length.

Suffer from outliers.
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Industrial Implementations — Nvidia TensorRT

Saturation Quantization — INT8 Inference

above |threshold| to 127

T| 0.0 - +T]
R IR IR R e 22

5398 36 9 300¢ 3¢
-127 0: 127

Set a threshold as the maxiumum value.
Divide the value domain into 2048 groups.

Traverse all the possible thresholds to find the best one with minimum KL

divergence.
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Industrial Implementations — Nvidia TensorRT

Relative Entropy of two encodings

¢ INT8 model encodes the same information as the original FP32 model.
® Minimize the loss of information.

® Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative
entropy or information divergence).

® P, Q - two discrete probability distributions:

N

Di(P|Q) = ZP(xi)log

i=1

P(x;)
Q(x;)

¢ Intuition: KL divergence measures the amount of information lost when
approximating a given encoding.
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Quantization Aware Training

(QAT)

he
s

=
LS



QAT: Weight

Straight Through Estimator (STE)?

¢ Forward integer, Backward floating point

¢ Rounding to nearest

Weigh r Quantized Weight Q
FP) Quantizer (INT)
A || 22 1 2
17 | 36 'l: ﬁ v ,l: 2| 2

STE

01 | -01
2 -1
-0.2 | 0.2
Gradient dL/dr
(FP)

(ol | =)l
1 2
-02 | 0.2
Gradient dL/dQ
(FP)

Ii>
<:| Backward Pass

2Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating
gradients through stochastic neurons for conditional computation”. In: arXiv preprint

arXiv:1308.3432.
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Better Gradients

Is Straight-Through Estimator (STE) the best?

¢ Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

¢ Poor gradient: STE fails at investigating better gradients for quantization training.
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QAT: Activation

PArameterized Clipping acTivation (PACT)?

¢ Relu6 — clipping
¢ threshold — clipping range in quantization

® range upper/lower bound trainable

0, z € (—00,0) y=x y=6
y=PACT(2) =05(|z| — |z —a|+a) =z, z€[0,a)
a, € [o,+o0)

*Jungwook Choi, Zhuo Wang, et al. (2018). “Pact: Parameterized clipping activation for
quantized neural networks”. In: arXiv preprint arXiv:1805.06085. 28/30



PArameterized Clipping acTivation Function (PACT)*

® A new activation quantization scheme in which the activation function has a
parameterized clipping level a.

¢ The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

¢ In PACT, the convolutional ReLU activation function in CNN is replaced with:

0, x € (0,0)
fx)=05(x|—|x—a|+a)=< x, x€[0,a)
a, X € [a,+00)

where « limits the dynamic range of activation to [0, «.

4]ungwook Choi, Swagath Venkataramani, et al. (2019). “Accurate and efficient 2-bit quantized
neural networks”. In: Proceedings of Machine Learning and Systems 1. 29/30



PArameterized Clipping acTivation Function (PACT)

¢ The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:
2k 1 e
=round (y- ——) - =——
Yq (y a ) 2k _1
* With this new activation function, « is a variable in the loss function, whose value
can be optimized during training.

¢ For back-propagation, gradient % can be computed using STE to estimate %—y; as 1.

y=0.5(x| - |x —a|l + a)
a 9y
Jda

a X a X
PACT activation function and its gradient.
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