CENG 4480

Embedded System Development & Applications

Lecture 10: Memory 2

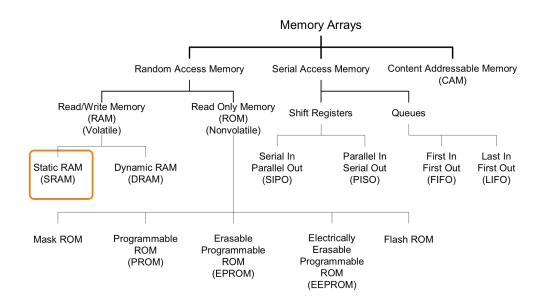
Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: October 27, 2021)

Fall 2021

CENG4480 v.s. CENG3420

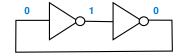
CENG3420:

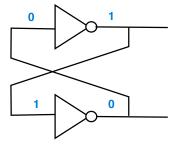

- architecture perspective
- memory coherent
- data address

CENG4480:

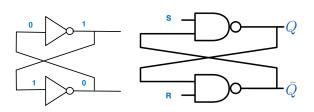
• more details on how data is stored

Memory Arrays

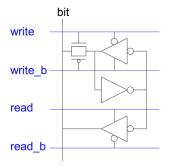


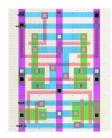

SRAM

• What if we add feedback to a pair of inverters?


- Usually drawn as a ring of cross-coupled inverters
- Stable way to store one bit of information (w. power)

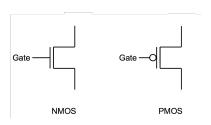
How to change the value stored?

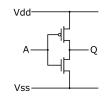

- Replace inverter with NAND gate
- RS Latch



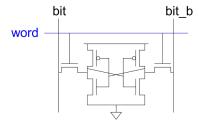
A	В	A nand B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

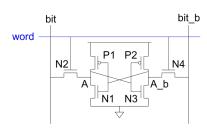
- Basic building block: SRAM Cell
 - Holds one bit of information, like a latch
 - Must be read and written
- 12-transistor (12T) SRAM cell
 - Use a simple latch connected to bitline
 - $46 \times 75 \lambda$ unit cell

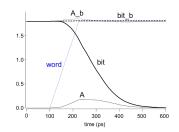




nMOS, pMOS, Inverter

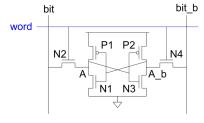

- nMOS:
 - Gate = 1, transistor is ON
 - Then electric current path
- pMOS:
 - Gate = 0, transistor is ON
 - Then electric current path
- Inverter:
 - Q = NOT(A)


- Used in most commercial chips
- A pair of weak cross-coupled inverters
- Data stored in cross-coupled inverters
- Compared with 12T SRAM, 6T SRAM:
 - (+) reduce area
 - (-) much more complex control



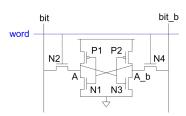
6T SRAM Read

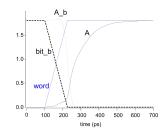
- Precharge both bitlines high
- Then turn on wordline
- One of the two bitlines will be pulled down by the cell
- Read stability
 - A must not flip
 - N1 >> N2



EX: 6T SRAM Read

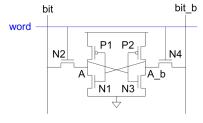
• Question 1: A = 0, $A_b = 1$, discuss the behavior:


• Question 2: At least how many bit lines to finish read?



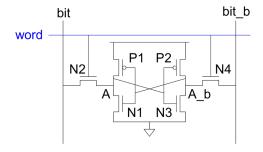
6T SRAM Write

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value
- Writability
 - Must overpower feedback inverter
 - N4 >> P2
 - N2 >> P1 (symmetry)

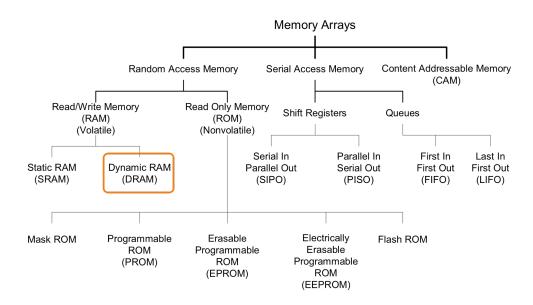


EX: 6T SRAM Write

• Question 1: A = 0, $A_b = 1$, discuss the behavior:


• Question 2: At least how many bit lines to finish write?

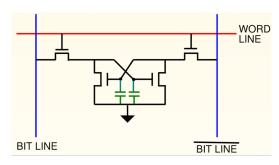
6T SRAM Sizing



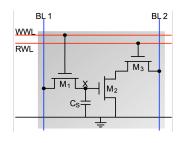
- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell

Memory Arrays

DRAM

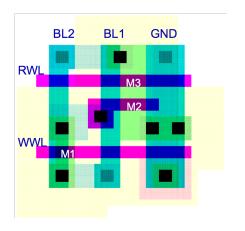

Dynamic RAM (DRAM)

- Basic Principle: Storage of information on capacitors
- Charge & discharge of capacitor to change stored value
- Use of transistor as "switch" to:
 - Store charge
 - Charge or discharge

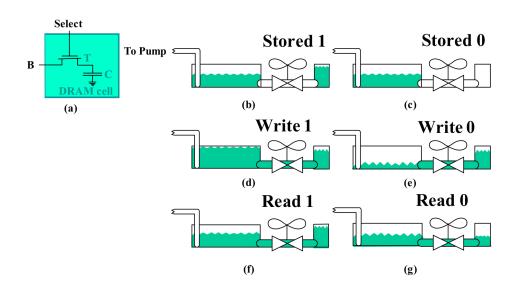

Remove the two p-MOS transistors from static RAM cell, to get a four-transistor dynamic RAM cell.



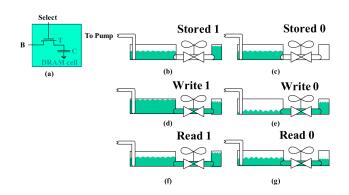
- Data must be refreshed regularly
- Dynamic cells must be designed very carefully
- Data stored as charge on gate capacitors (complementary nodes)


- No constraints on device ratios
- Reads are non-destructive
- Value stored at node X when writing a "1" = $V_{DD} V_{T}$

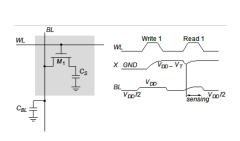
3T DRAM Layout

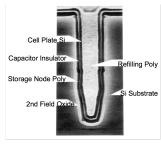


[1970: Intel 1003]


- 576 λ 3T DRAM v.s. 1092 λ 6T SRAM
- Further simplified

• Need sense amp helping reading





- Read
 - Pre-charge large tank to VDD2
 - If Ts = 0, for large tank: VDD2 V1
 - If Ts = 1, for large tank: VDD2 + V1
 - V1 is very insignificant
 - Need sense amp

- Write: Cs is charged or discharged by asserting WL and BL
- Read: Charge redistribution takes place between bit line and storage capacitance
- Voltage swing is small; typically around 250 mV

Trench-capacitor cell [Mano87]

EX. 1T DRAM Cell

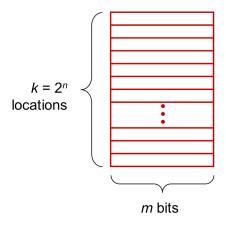
- Question: V_{DD} =4V, C_S =100pF, C_{BL} =1000pF. What's the voltage swing value?
- Note: $\Delta V = \frac{V_{DD}}{2} \cdot \frac{C_S}{C_S + CBL}$

SRAM v.s. DRAM

• Static (SRAM)

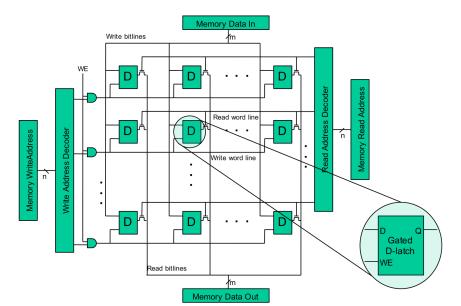
- Data stored as long as supply is applied
- Large (6 transistorscell)
- Fast
- Compatible with current CMOS manufacturing

Dynamic (DRAM)

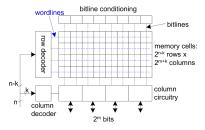

- Periodic refresh required
- Small (1-3 transistors/cell)
- Slower
- Require additional process for trench capacitance

Array Architecture

Array Architecture

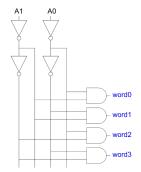

- 2ⁿ words of 2^m bits each
- Good regularity easy to design

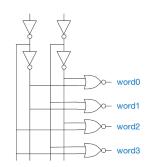
SRAM Memory Structure


Latch based memory

Array Architecture

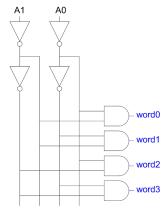
- 2ⁿ words of 2^m bits each
- How to design if n >> m?
- Fold by 2k into fewer rows of more columns


Decoders

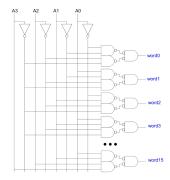

- n:2ⁿ decoder consists of 2ⁿ n-input AND gates
 - One needed for each row of memory
 - Build AND with NAND or NOR gates

Inpu Inpu			> -0	Output
	Α	В	Output	
	0	0	1	
	0	1	0	
	1	0	0	
			0	

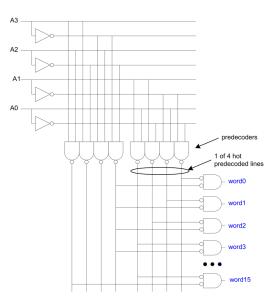
Static CMOS



Using NOR gates


• Question: AND gates => NAND gate structure

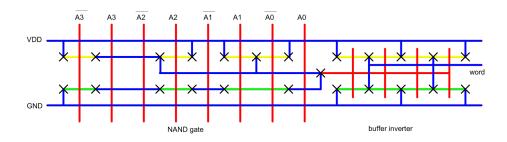
Larger Decoder


- For n > 4, NAND gates become slow
 - Break large gates into multiple smaller gates

Predecoding

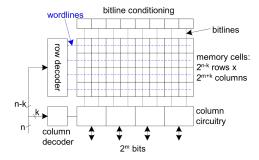
- Many of these gates are redundant
 - Factor out common gates
 - => Predecoder
 - Saves area
 - Same path effort

• Question: How many NANDs can be saved?

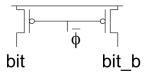


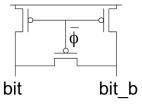
Appendix

*Decoder Layout

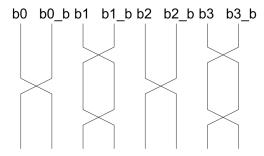

- Decoders must be pitch-matched to SRAM cell
 - Requires very skinny gates

*Column Circuitry

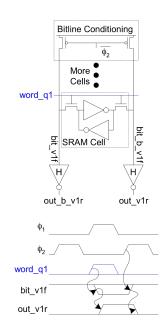

- Some circuitry is required for each column
 - Bitline conditioning
 - Column multiplexing
 - Sense amplifiers (DRAM)

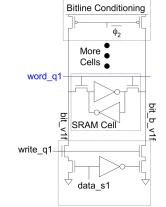

*Bitline Conditioning

• Precharge bitlines high before reads


• Equalize bitlines to minimize voltage difference when using sense amplifiers

*Twisted Bitlines

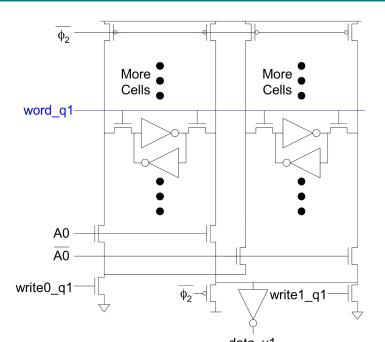

- Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by twisting bitlines



*SRAM Column Example

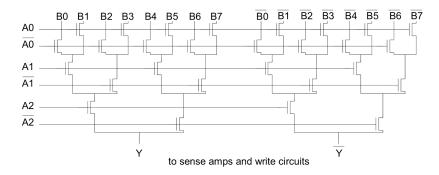
read

write

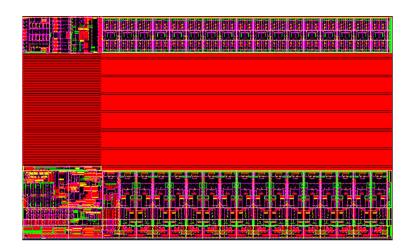

*Column Multiplexing

- Recall that array may be folded for good aspect ratio
- Ex: 2 kword x 16 folded into 256 rows x 128 columns
 - Must select 16 output bits from the 128 columns
 - Requires 16 8:1 column multiplexers

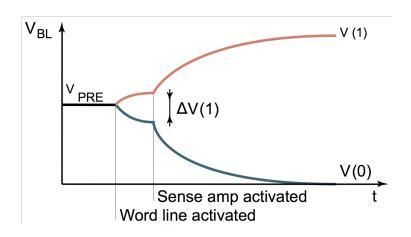
*Ex: 2-way Muxed SRAM



*Tree Decoder Mux



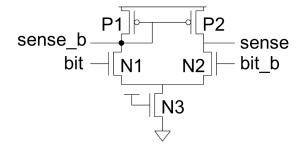
- Column mux can use pass transistors
 - Use nMOS only, precharge outputs
- One design is to use k series transistors for 2^k :1 mux
 - No external decoder logic needed


*SRAM from ARM

Sense Amp Operation for 1T DRAM

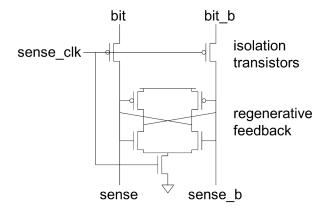
- 1T DRAM read is destructive
- Read and refresh for 1T DRAM

*Sense Amplifiers (DRAM)



- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 256 rows x 128 cols
 - 256 cells on each bitline
- $t_{pd} \propto (C/I)\Delta V$
 - Ex: Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- Sense amplifiers are triggered on small voltage swing (reduce ΔV)

*Differential Pair Amp


- Differential pair requires no clock
- But always dissipates static power

*Clocked Sense Amp

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- Isolation transistors cut off large bitline capacitance

Thank You:-)