CENG 4480 Embedded System Development & Applications

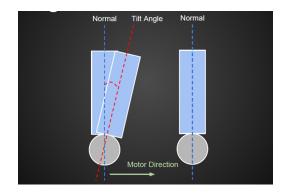
Lecture 07: Kalman Filter–1

- Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk
- (Latest update: October 27, 2021)

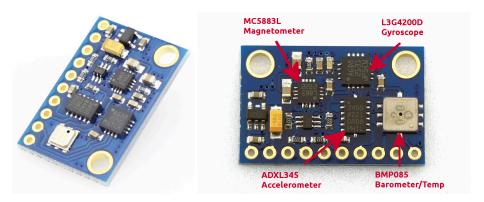
Fall 2021

2 Complementary Filter

2 Complementary Filter

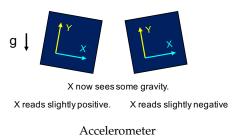

Self Balance Vehicle / Robot

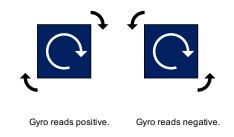
- http://www.segway.com/
- http://wowwee.com/mip/



Motion against the tilt angle, so it can stand upright.

http://www.hotmcu.com/imu-10dof-13g4200dadx1345hmc58831bmp180-p-190.html


- L3G4200D: gyroscope, measure angular rate (relative value)
- ADXL345: accelerometer, measure acceleration


2 Complementary Filter

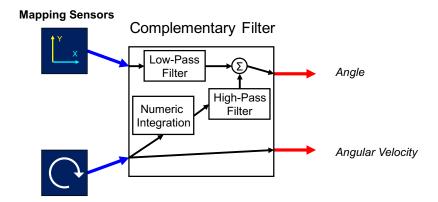
Complementary Filter

- Give accurate reading of tilt angle
- Slower to respond than Gyro's
- prone to vibration/noise



Gyroscope

- response faster
- but has drift over time


Since

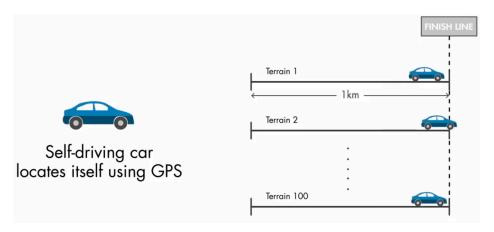
Combine two sensors to find output

Complementary Filter (cont.)


```
Read_acc();
Read_gyro();
Ayz=atan2(RwAcc[1],RwAcc[2])*180/PI; //angle by accelerometer
Ayz==offset; //adjust to correct
Angy = 0.98*(Angy+GyroIN[0]*interval/1000)+0.02*Ayz; //complement filter
```

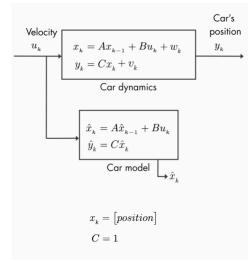

2 Complementary Filter

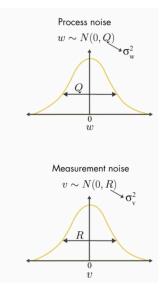
Covariance Matrix



- Born in Budapest, Hungary
- BS in 1953 and MS in 1954 from MIT electrical engineering
- PhD in 1957 from Columbia University.

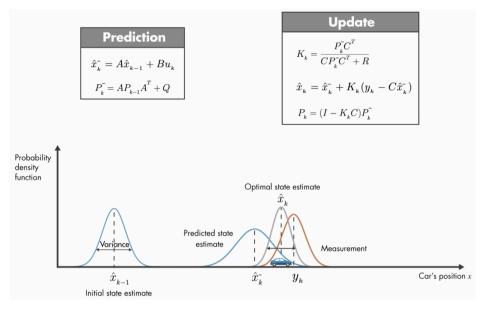
- Famous for his co-invention of the Kalman filter widely used in control systems to extract a signal from a series of incomplete and noisy measurements.
- Convince NASA Ames Research Center 1960
- Kalman filter was used during Apollo program


Self-Driving Car Location Problem



Problem Example 1

Self-Driving Car Location Problem



Problem Example 1

Self-Driving Car Location Problem

Exercise: Analyse Kalman Gain

What is Kalman Gain K_k , if measurement noise R is very small? What if R is very big?

Angle Measurement System

$$\boldsymbol{x}_t = \boldsymbol{A}_t \boldsymbol{x}_{t-1} + \boldsymbol{B}_t \boldsymbol{u}_t + \boldsymbol{w}_t$$

- *x*_t: state in time *t*
- A_t : state transition matrix from time t 1 to time t
- *u*_t: input parameter vector at time *t*
- *B*_{*t*}: control input matrix apply the effort of *u*_{*t*}
- w_t : process noise, $w_t \sim N(0, Q_t)^1$

 $^{{}^{1}}w_{t}$ assumes zero mean multivariate normal distribution, covariance matrix Q_{t}

Angle Measurement System

$$\boldsymbol{x}_t = \boldsymbol{A}_t \boldsymbol{x}_{t-1} + \boldsymbol{B}_t \boldsymbol{u}_t + \boldsymbol{w}_t$$

x_t = [*x_t*, *x_t*][⊤]: *x_t* is current angle, while *x_t* is current rate *A_t* = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} *B_t* = [(Δ*t*)²/2, Δ*t*][⊤] *u_t* = Δ*x_t*

System Measurement

$$\boldsymbol{z}_t = \boldsymbol{C}\boldsymbol{x}_t + \boldsymbol{v}_t$$

- z_t : measurement vector
- *C*: transformation matrix mapping state vector to measurement
- v_t : measurement noise, $v_t \sim N(0, \mathbf{R}_t)^2$

 v_t assumes zero mean multivariate normal distribution, covariance matrix R_t

Exercise

In angle measurement lab, what is the transformation matrix *C*?

 $\boldsymbol{z}_t = \boldsymbol{C}\boldsymbol{x}_t + \boldsymbol{v}_t$