
CENG 4480
Embedded System Development & Applications

Lecture 07: PID Control

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: August 9, 2021)

Fall 2021

1 Motors

2 Open-loop and Closed-loop Control

3 Control Methods

4 Software

Overview

2/37

1 Motors

2 Open-loop and Closed-loop Control

3 Control Methods

4 Software

Overview

3/37

DC Motors: Direct current motor, easy to
control and use. For making wheeled
robots

Servo motors for making robot legs
http://www.lynxmotion.com/

DC Motor and Servo Motor

3/37

http://www.lynxmotion.com/

• Speed (≈1200–2000 rpm).

• Operates on a 3∼5Volt, Can use gear box (e.g. ratio
58:1) to increase torque

• Use H-bridge circuit to boost up current from the
TLL level to motor driving level.

Taobao link

Small Direct Current D.C. Motors

4/37

https://item.taobao.com/item.htm?spm=a230r.1.14.59.33d0b9eMNhnV4&id=16111251935

LEN

LDIR

REN

RDIR

2 (1A)
1Y(3)

1(EN1/2)

7(2A) (2Y)6

10(3A)
(3Y)11

9(EN3/4)

15(4A)
(4Y)14

Left-motor

Right-motor

H-bridge Chips

• L293D: H-bridge circuit, up 2A

• LDIR: left motor direction

• RDIR: right motor direction

• LEN: left motor enable

• REN: right motor enable

Motor Control Chip

5/37

1 Motors

2 Open-loop and Closed-loop Control

3 Control Methods

4 Software

Overview

6/37

Change motor supply power change speed

Problem: How much power is right?

Ans: don’t know , depends on internal/external frictions of individual motors.

Problem: How to control power (Ton) by MCU?

• Solution: Use feedback control to read actual wheel:

• Slower, increase power (+ Ton)

• Faster, reduce power (- Ton)

Open-loop Motor Control and its Problems

6/37

• Pulse Width Modulation

• Analog results with digital means

• a square signal switched between on and off

• changing the portion the signal on

PWM Signal

7/37

Exercise
When using the open-loop control method with a constant PWM signal for both wheels,
explain why the robot would slow down when climbing up hill.

8/37

• Supports single edge controlled and/or double edge controlled PWM outputs.

• Seven match registers allow up to 6 single edge controlled or 3 double edge
controlled PWM outputs, or a mix of both types.

LPC2138 PWM Configuration (Optional)

9/37

• Call analogWrite()

• On a scale of 0 – 255

• analogWrite(255) requests a 100% duty
cycle (always on)

• analogWrite(127) is a 50% duty cycle
(on half the time)

PWM in Arduino

10/37

• The real solution to real speed control is feedback control

• Require speed encoder to read back the real speed of the wheel at real time.

Feedback Control

11/37

• Read wheel speed.

• Use photo interrupter

• Use reflective disk to save space

• Based on interrupts

First you need to have speed encoders

12/37

• Our motor and speed encoder

• Each wheel rotation = 88 on/off changes

IR receiver Darkened
part
blocks light

IR light source

Wheel Encoder

13/37

14/37

https://youtu.be/7qf_ypIGn_0

New Speed

15/37

https://youtu.be/7qf_ypIGn_0

https://youtu.be/VvHg6_ql3Fg

Servo library in Arduino

16/37

https://youtu.be/VvHg6_ql3Fg

1 Motors

2 Open-loop and Closed-loop Control

3 Control Methods

4 Software

Overview

17/37

Closed-loop feed back control

Required speed
=leftRPMset

leftRPM

+

-

leftErr Motor
Alter PWM
for driver
L293

if (leftErr >deadband)
leftPWM increase by (Pgain * leftErr)

Note: Show the left motor control only

Proportional Feedback Control

17/37

• PID: Proportional-Integral-Derivative

• A more formal and precise method used in most modern machines

History of PID

• By Nicolas Minorsky in 1922

• Observations of a helmsman

• Steered the ship based on

• the current course error
• past error
• the current rate of change

PID Control

18/37

• Control for better performance

• Use PID, choose whatever response you want

Good performance
Criteria depends
on users and
applications

Too much overshoot/undershoot, not stable

Response too slow

time

Motor speed (w)

required

Introduction of PID

19/37

Describe the terms n the following diagrams:

Typically
value=10%
Depends
on application

Rise time Settling time0 time

Target
value

overshoot

Steady
state
error

undershoot

Values to evaluate a control system

20/37

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt

,

where
• e(t): error value

• u(t): control variable

• Kp: coefficient for the proportional (P)

• Ki: coefficient for the integral (I)

• Kd: coefficient for the derivative (D)

PID Control

21/37

PID Control (cont.)

22/37

Proportional Gain Kp

Larger Kp typically means faster response since the larger the error, the larger the
Proportional term compensation. An excessively large proportional gain will lead to
process instability and oscillation.

Integral Gain Ki

Larger Ki implies steady state errors are eliminated quicker. The trade-off is larger
overshoot: any negative error integrated during transient response must be integrated
away by positive error before we reach steady state.

Derivative Gain Kd

Larger Kd decreases overshoot, but slows down transient response and may lead to
instability due to signal noise amplification in the differentiation of the error.

PID – Control Terms Are Intertwined

23/37

Rise time Settling time0 time

Target
value

overshoot

Steady
state
error

undershoot

near steady state
See next slide

Typically
value=10%
Depends
on application

Parameters for Evaluating a Control System

24/37

Parameter Rise Time Overshoot Settling
Time

Steady
state error

Kp (Pgain) Decrease
step1

Increase Small
Change

Decrease

Ki (Igain) Decrease Increase Increase Eliminate
step3

Kd (Dgain) Small
Change

Decrease
step2

Decrease Small
Change

Effects of Increasing Parameters

25/37

Exercise
Please try to give the discrete incremental PID formulations. Some notations are given:

- u(t) is the output of a controller in the tth measurement interval.

- e(t) is the error between the target value and measurement value in the tth
measurement interval. And the error is measured every T time interval (T is small
enough).

- The PID parameters, Kp, Ki and Kd, are all set.

(Hint: incremental means ∆u(t) = u(t) − u(t − 1).)

26/37

Easter egg ��

27/37

Source: http://survivingtheworld.net/ScienceComic3.html

28/37

http://survivingtheworld.net/ScienceComic3.html

Source: http://survivingtheworld.net/ScienceComic3.html

29/37

http://survivingtheworld.net/ScienceComic3.html

Source: http://survivingtheworld.net/ScienceComic3.html

30/37

http://survivingtheworld.net/ScienceComic3.html

Source: http://survivingtheworld.net/ScienceComic3.html

31/37

http://survivingtheworld.net/ScienceComic3.html

1 Motors

2 Open-loop and Closed-loop Control

3 Control Methods

4 Software

Overview

32/37

https://youtu.be/Lym2UxUh81Q

Overview

32/37

https://youtu.be/Lym2UxUh81Q

Pay attention to the following variables:
• P, I, D: to tuned

• PWMMR2, PWMLER

Algorithm for PID Core

33/37

if (tmpl>=(MIDL+50)) {
deltal = (tmpl - (MIDL+50))/200;
......

}

Dead-band
A Dead-band (sometimes called a neutral zone) is an area of a signal range or band where
no action occurs.

• Only enable motor when tmpl > a small value (deadband, ie = 50)

• Otherwise may oscillate when tmpl is small

Dead-band

Dead Band

34/37

Usually done by trail and error

1 Tune (adjust manually)

• step1: Kp
• step2: Kd
• mstep3: Ki

2 Record the angle by the computer to see if the performance is ok or not

• Yes, then done.
• If no, go to first step again

Accepted
performance

unstable
T1 time

PID Tuning

35/37

#include <PID_v1.h>
double Setpoint, Input, Output;
double aggKp=4, aggKi=0.2, aggKd=1;
double consKp=1, consKi=0.05, consKd=0.25;

PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT);
void setup() {

Input = analogRead(0);
Setpoint = 100;
myPID.SetMode(AUTOMATIC); //turn the PID on

}
void loop() {
Input = analogRead(0);
double gap = abs(Setpoint-Input); //distance away from setpoint
if(gap<10) { //we’re close to setpoint, use conservative tuning parameters
myPID.SetTunings(consKp, consKi, consKd);

}
else { //we’re far from setpoint, use aggressive tuning parameters

myPID.SetTunings(aggKp, aggKi, aggKd);
}
myPID.Compute();
analogWrite(3,Output);

}

Arduino PID Library

36/37

• Studies PID control theory

• PID implementation

Summary

37/37

	Main Talk
	Motors
	Open-loop and Closed-loop Control
	Control Methods
	Software

