CENG 4480

Embedded System Development & Applications

Lecture 04: Analog/Digital Conversions

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: October 6, 2021)

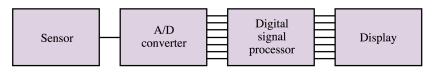
Fall 2021

Overview

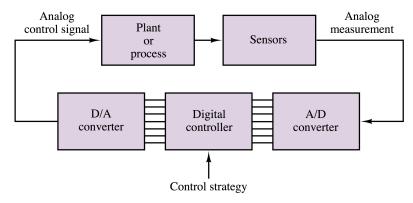
- Preliminaries
- 2 Comparator
- 3 Digital to Analog Conversion (DAC)
- 4 Analog to Digital Conversion (ADC)

Preliminaries

Analog/Digital Conversions

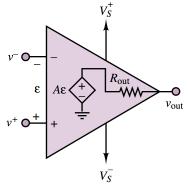


Topics:


- Digital to analog conversion
- Analog to digital conversion
- Sampling-speed limitation
- Frequency aliasing
- Practical ADCs of different speed

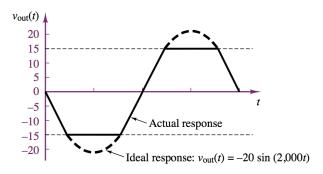
Block Diagrams

Digital measuring instrument


Digital control system

Comparator

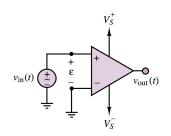
Op-Amp Comparator

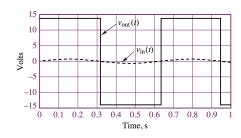

Open-Loop Mode

$$v_{out} = A_V(v^+ - v^-)$$

- Extreme large gain
- Any small difference ϵ will cause large outputs.

Voltage Supply Limits




Op-amp output with voltage supply limit ($V_s^+ = V_s^- = 15$)

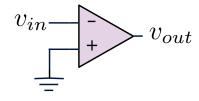
- Powered by external DC voltage supplies $V_S^+ \& V_S^-$
- Amplifying signals only within the range of supply voltages
- In a practical op-amp, saturation would be reached at 1.5 V below the supply voltags.

Switching waveforms by Comparator

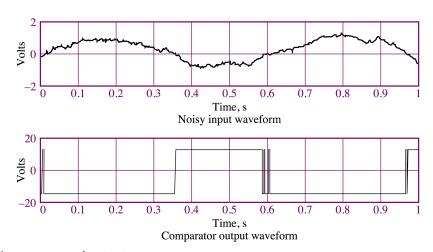
Switching waveforms of non-inverting comparator.


Since $\epsilon = V cos(\omega t)$, therefore

$$\epsilon > 0 \Rightarrow v_{out} = V_{sat}^{+}$$
 $\epsilon < 0 \Rightarrow v_{out} = V_{sat}^{-}$

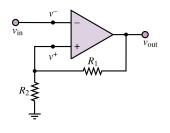

^{*} V_{sat} : saturation voltage (e.g., ± 15 V supplies is approximately ± 13.5 V)

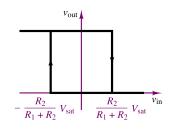
Noninverting & Inverting Comparator


(a) Noninverting comparator

(b) Inverting comparator

Limitation of Conventional Comparator





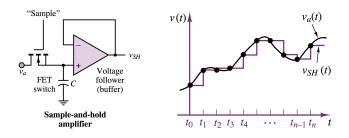
- In the presence of noisy inputs
- Cross the reference voltage level repeatedly
- Cause multiple triggering


Schmitt Trigger

- Based on Inverting comparator
- Positive feedback
- (+) Increase the switching speed
- (+) Noise immunity

Question: prove two reference voltages of schmitt trigger.

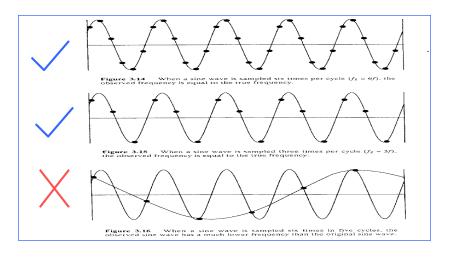
Sample-and-Hold Amplifier


Motivations:

When a slow ADC is used to sample a fast changing signal only a short sampling point can be analyzed

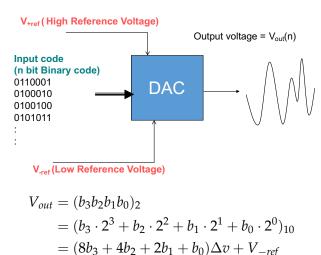
- To resolve uncertainty during ADC
- "freeze" the value of analog waveform for a time sufficient for the ADC to complete its task

Sample-and-Hold Amplifier



- A MOSFET analog switch is used to "sample" analog waveform
- While MOSFET conducts, charge the "hold" capacitor

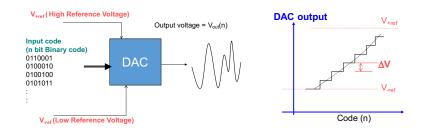
Good Sample, Bad Sample



- When sampling 6 times per cycle, close to the original.
- when sampling 3 times per cycle, less reliable but frequency is equal to original.
- When sampling 6 times per 5 cycles, frequency is different.

Digital to Analog Conversion (DAC)

Digital-to-Analog Converter (DAC)



 Δv : smallest step size by which voltage can increase

How to Determine Δv ?

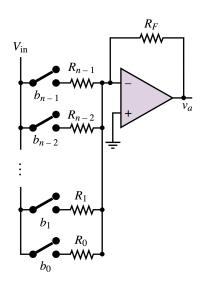
$$\Delta v = rac{V_{+ref} - V_{-ref}}{2^n},$$

where n is the bit# of input digital signal.

DAC Characteristics

Glitch:

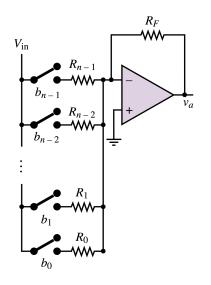
A transient spike in the output of a DAC that occurs when more than one bit changes in the input code.


- Use a low pass filter to reduce the glitch
- Use sample-and-hold circuit to reduce the glitch

Settling time:

Time for the output to settle to typically 1/4 LSB after a change in DA output.

DAC Type 1: Weighted Adder DAC

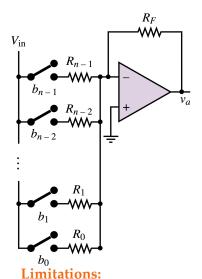


Similar to summing amplifier:

$$v_a = -\sum_i (\frac{R_F}{R_i} \cdot b_i \cdot v_{in})$$

DAC Type 1: Weighted Adder DAC

Similar to summing amplifier:


$$v_a = -\sum_i (\frac{R_F}{R_i} \cdot b_i \cdot v_{in})$$

If we select
$$R_i = \frac{R_0}{2^i}$$
:
$$v_a = -\frac{R_F}{R_0}(2^{n-1}b_{n-1} + \dots + 2^1b_1 + 2^0b_0) \cdot v_{in}$$

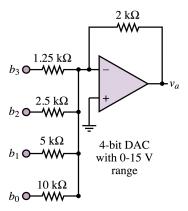
Note here V_{-ref} is 0 (ground)

DAC Type 1: Weighted Adder DAC

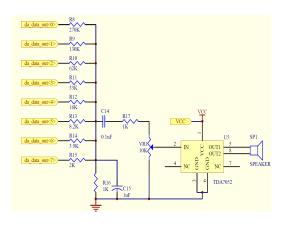
Similar to summing amplifier:

$$v_a = -\sum_i (\frac{R_F}{R_i} \cdot b_i \cdot v_{in})$$

If we select
$$R_i = \frac{R_0}{2^i}$$
:
$$v_a = -\frac{R_F}{R_0}(2^{n-1}b_{n-1} + \dots + 2^1b_1 + 2^0b_0) \cdot v_{in}$$

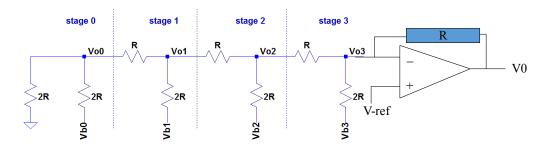

Note here V_{-ref} is 0 (ground)

• Impossible to fabricate a wide range of resistor values in the same IC chip


Question: 4-bit DAC

For given $(b_3b_2b_1b_0) = \{(1111), (0000), (1010)\}$, calculate v_a .

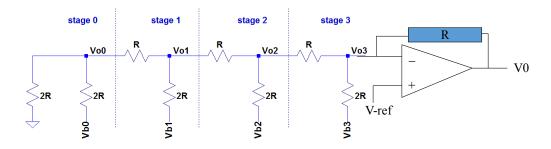
Practical Resistor Network DAC and Audio Amplifier



Data Bit	Ideal R	Real R
0 (LSB)	256K	270K
1	128K	130K
2	64K	62K
3	32K	33K
4	16K	16K
5	8K	8.2K
6	4K	3.9K
7 (MSB)	2K	2K

• Not perfect, but okay.

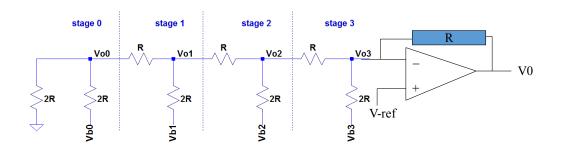
DAC Type 2: R-2R DAC



Motivations:

- Use only two values of resistors which make for easy and accurate fabrication and integration
- At each node, current is split into 2 equal parts
- The most popular DAC

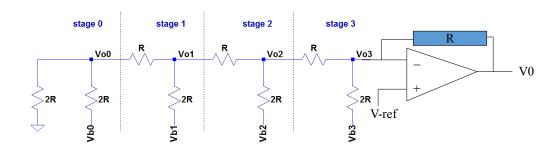
DAC Type 2: R-2R DAC



Reference:

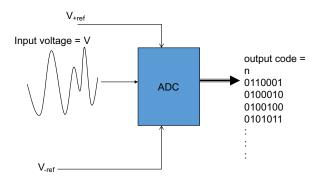
http://www.tek.com/blog/tutorial-digital-analog-conversion—r-2r-dac

DAC Type 2: R-2R DAC



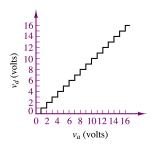
Given *I* as input value (*n* bit):

$$V_{o3} = \frac{V_{b0}}{16} + \frac{V_{b1}}{8} + \frac{V_{b2}}{4} + \frac{V_{b3}}{2}$$

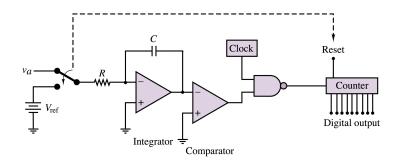

Question: R-2R DAC

For given $(b_3b_2b_1b_0) = \{(1111), (0000), (1010)\}$, calculate v_{o3} .

Analog to Digital Conversion (ADC)


Analog-to-Digital Converter (ADC)

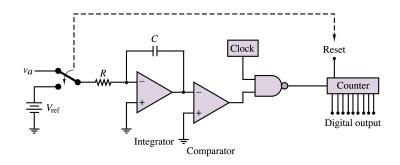
Quantization



Quantized voltage $v_d \mid b_3 \mid b_2$		h.	Binary representation b_1 b_0			
	v a	03	02	ν_1	00	
	0	0	0	0	0	
	1	0	0	0	1	
	2	0	0	1	0	
	3	0	0	1	1	
	4	0	1	0	0	
	:	÷				
	14	1	1	1	0	
	15	1	1	1	1	

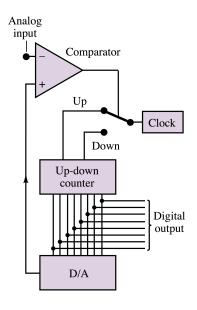
- Convert an analog level to digital output
- Employ $2^n 1$ intervals (n: bit#)
- v_a : analog voltage
- v_d : output digital voltage

ADC Type 1: Integrating ADC



- Accumulate the input current on a capacitor for a fixed time
- Then measure time (T) to discharge the capacitor
- When cap is discharged to 0 V, comparator will stop the counter

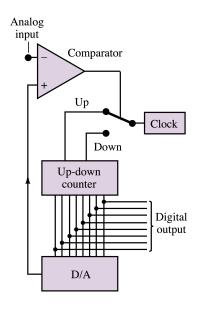
ADC Type 1: Integrating ADC



- Accumulate the input current on a capacitor for a fixed time
- Then measure time (T) to discharge the capacitor
- When cap is discharged to 0 V, comparator will stop the counter

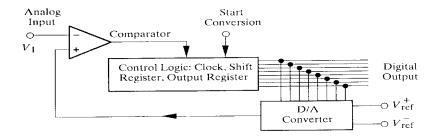
Limination: Slow

ADC Type 2: Tracking ADC



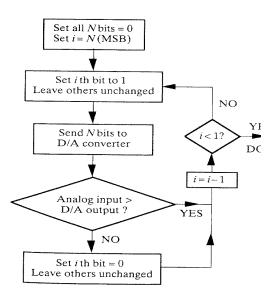
- ADC repeatedly compares its input with DAC outputs
- Up/down count depends on input/DAC output comparison

ADC Type 2: Tracking ADC

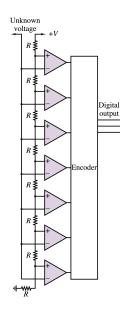

- ADC repeatedly compares its input with DAC outputs
- Up/down count depends on input/DAC output comparison

Limination: Slow

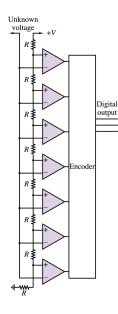
ADC Type 3: Successive Approximation



- Replace "Up-down counter" by "control logic"
- Binary search to determine the output bits
- still slow although faster than types 1 & 2


Flow chart of Successive-approximation ADC

ADC Type 4: Flash ADC

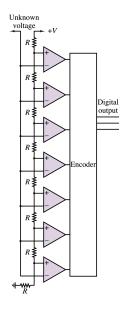


- Divide the voltage range into $2^n 1$ levels
- Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel

Pros:

ADC Type 4: Flash ADC

- Divide the voltage range into $2^n 1$ levels
- Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel


Pros:

- Very fast for high quality audio and video
- Sample and hold circuit NOT required

Cons:

ADC Type 4: Flash ADC

- Divide the voltage range into $2^n 1$ levels
- Use $2^n 1$ comparators to determine what the voltage level is
- Fully parallel

Pros:

- Very fast for high quality audio and video
- Sample and hold circuit NOT required

Cons:

Very expensive for wide bits conversion

Thanks You