CENG 4480

Embedded System Development \& Applications

Lecture 02: Operational Amplifier - 1

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk
(Latest update: October 27, 2021)

Fall 2021

Introduction

Computer interfacing Introduction

To Learn:

- how to connect the computer to various physical devices.
- Overall interfacing schemes
- Analog interface circuits, active filters

Some diagrams are taken from references:

- [1] S.E. Derenzo, "Interfacing- A laboratory approach using the microcomputer for instrumentation, data analysis and control", Prentice Hall, 1990.
- [2] Giorgio Rizzoni, "Principles and Applications of Electrical Engineering", McGraw-Hill, 2005.

Amplifier in Audio System

Converting low-voltage sensor signal to a level suitable for driving speaksers.

Analog Interface Example 1

Audio recording systems

- Audio recording systems
- Audio signal is $20-20 \mathrm{KHz}$
- Sampling at $40 \mathrm{KHz}, 16$-bit is $\mathrm{Hi}-\mathrm{Fi}$
- Stereo ADC requires to sample at 80 KHz .
- Calculate storage requirement for one hour?
- Audio recording standards: Audio CD; Mini-disk MD; MP3

Analog Interface Example 2

Analog hand held controller

(a) PS5

(b) Wii

(c) Driving wheel

Operational Amplifier (Op-Amp)

- Why use op amp?
- What kinds of inputs/outputs do you want?
- What frequency responses do you want?

Direct Current (DC) amplifier

- Example: use power op amp (or transistor) to control the DC motor operation.
- Need to maintain the output voltage at a certain level for a long time.
- All DC (biased) levels must be designed accurately .
- Circuit design is more difficult.

Biasing in electronics

The method of establishing predetermined voltages or currents at various points of an electronic circuit for the purpose of establishing proper operating conditions in electronic components
https://en.wikipedia.org/wiki/Biasing

Alternating Current (AC) amplifier

- Example: Microphone amplifier, signal is AC and is changing at a certain frequency range.
- Current is alternating not stable.
- Use capacitors to connect different stages
- So no need to consider biasing problems.

Op-Amp Preliminaries

Amplifier

A circuit where the output signal power is greater than the input signal power. Otherwise is referred as an attenuator.

- Without examining actual operation (thousands of elements)
- $Z_{i n}$: input impedance (a.k.a. $R_{i n}$)

Voltage gain A

$$
A=\frac{V_{\text {out }}}{V_{\text {in }}}
$$

- Usually voltage gain may be either very large or very small
- Invonvenient to express as a simple ratio
- Therefore, decibel (dB):

Voltage gain in dB

$$
A=20 \cdot \log _{10} \frac{V_{\text {out }}}{V_{\text {in }}}
$$

Question: Voltage Gain

$V_{\text {in }}=20 \mathrm{mV}, V_{\text {out }}=500 \mathrm{mV}$. Calculate the voltage gain in dB .

Simplified circuit symbol

- Ideal difference amplifier
- (+): noninverting input
- (-): inverting input
- A: open-loop voltage gain (order of 10^{5} to 10^{7})

- $R_{i n}$: input impedance (High)
- $R_{\text {out }}$: output impedance (Low)

Why prefer High $R_{\text {in }}$, Low $R_{\text {out }}$?

Is equivelent to:

Is equivelent to:

To maximize $V_{\text {in2 }}$

$$
V_{\text {in } 2}=V_{\text {out } 1} \cdot \frac{R_{\text {in } 2}}{R_{\text {out } 1}+R_{\text {in } 2}}
$$

Open-loop \& Closed-loop

- Open-loop gain
- Closed-loop gain

Feedback connection

The effect of the feedback connection from output to inverting input is to force the voltage at the inverting input to be equal to that at the noninverting input.
"Note that closing the feedback loop turns a generally useless amplifier (the gain is too high!) into a very useful one (the gain is just right)!"

Ideal Op-Amp Rules

Rule 1

No current flows in or out of the inputs

Rule 2

The Op-Amp tries to keep the inputs the same voltage

* Rule 2 is only for negtive feedback op-amp

Open-Loop Gain A

Ideal: Infinite, thus $V^{+}=V^{-}$
Real: Typical range (20,000, 200,000), thus $V_{\text {out }}=A\left(V^{+}-V^{-}\right)$

Input Impedance

Ideal: Infinite. Since $Z_{i n}=\frac{V_{\text {in }}}{I_{\text {in }}}$, zero input current
Real: No such rule.

Bandwidth

Ideal: Infinite Bandwidth
Real: Gain-Bandwidth product (GB).

- Fixed gain-bandwidth product for any given amplifier
- Define bandwidth as the frequency range over which the voltage gain of the amplifier is above 70.7% or -3 dB of its maximum output value

Slew Rate

$$
\text { Slew rate }=\left|\frac{d v(t)}{d t}\right|
$$

Op-Amp List

Voltage follower

- Unit voltage gain
- Output $V_{0}=V_{1}$
- high current gain, high input impedance

In real op-amp

$$
V_{0}=A\left(V_{1}-V_{0}\right) \Rightarrow V_{0}=\frac{V_{1} A}{1+A} \approx V_{1}
$$

Non-inverting Amplifier

- $R_{i n}$: High input impedance

In real op-amp

$$
\begin{aligned}
& V_{0}=A\left(V_{1}-V_{2}\right) \text { and } \frac{V_{2}}{V_{0}}=\frac{R_{1}}{R_{1}+R_{2}} \\
\Rightarrow & \frac{V_{0}}{V_{1}}=\frac{R_{1}+R_{2}}{R_{1}+\left(R_{1}+R_{2}\right) / A} \approx \frac{R_{1}+R_{2}}{R_{1}}
\end{aligned}
$$

Question: Non-inverting Amplifier Gain

Calculate $\frac{V_{0}}{V_{1}}=$

Current to Voltage Converter

$$
V_{0}=-I \cdot R
$$

Because of Kirchhoff's circuit laws, $i_{1}+i_{2}=i^{-}=0$
In real op-amp

$$
\begin{array}{r}
V_{0}=A\left(0-V_{2}\right) \text { and } \frac{V_{2}-V_{1}}{R_{1}}=\frac{V_{0}-V_{2}}{R_{2}} \\
\Rightarrow R_{1}\left(V_{0}+\frac{V_{0}}{A}\right)=-R_{2}\left(\frac{V_{0}}{A}+V_{1}\right) \Rightarrow \frac{V_{0}}{V_{1}} \approx-\frac{R_{2}}{R_{1}}
\end{array}
$$

- $R_{i n}=R_{1}$
- $\operatorname{Gain}(G)=-\frac{R_{2}}{R_{1}}$

- $R_{i n}=R_{1}$
- $\operatorname{Gain}(G)=-\frac{R_{2}}{R_{1}}$

Question: How to increase input impedance?

- Calculate the difference between V_{1} and V_{2}
- Can control gain

Question: Differential Amplifier Gain

Calculate $V_{0}=$

Question: Differential Amplifier Gain

Calculate $V_{0}=$

- To make a better DC amplifier from op-amps
- combine 2 noninverting amplifier \& 1 differential amplifier

Solution 1:

- For each non-inverting amplifier: $A=1+\frac{2 R_{2}}{R_{1}}$
- Connecting to differential amplifier:

$$
\begin{aligned}
V_{\text {out }} & =\frac{R_{F}}{R}\left(v_{2}^{\prime}-v_{1}^{\prime}\right) \\
& =\frac{R_{F}}{R}\left(1+\frac{2 R_{2}}{R_{1}}\right)\left(v_{2}-v_{1}\right)
\end{aligned}
$$

Instrumental Amplifier (cont.)

Solution 2:

- By rule 2, two input voltages are the same, thus we look at the line w. R_{2}, R_{1}, and R_{2} :

$$
\frac{v_{2}-v_{1}}{R_{1}}=\frac{v_{2}^{\prime}-v_{1}^{\prime}}{2 R_{2}+R_{1}}
$$

- Therefore: $v_{2}^{\prime}-v_{1}^{\prime}=\left(1+\frac{2 R_{2}}{R_{1}}\right)\left(v_{2}-v_{1}\right)$

Comparing Amplifiers

	Op Amp	Inv. Amp	Noninv. Amp	Diff. Amp	Instr. Amp
High $R_{\text {in }}$	\checkmark	X	\checkmark	X	\checkmark
Diff Input	\checkmark	X	X	\checkmark	\checkmark
Define Gain	X	\checkmark	\checkmark	\checkmark	\checkmark

