CENG 4480 Embedded System Development & Applications

Lecture 01: Introduction

- Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk
- (Latest update: September 8, 2021)

Fall 2021

Important Notes

- Be PUNCTUAL to class
- Keep QUIET during class, unless
 - you are raising questions to teachers or tutors
 - during in-class activities

Zero Tolerance

• Plagiarism, cheating, misconduct in test/exam will be reported to the Faculty Disciplinary Committee for handing.

Penalty

• Zero marks for the concerned assignments/test/exam/whole course, reviewable demerits, non-reviewable demerits, suspension of study, dismissal from University.

University Guidelines to Academic Honesty

http://www.cuhk.edu.hk/policy/academichonesty/

- Let's join hands to create a positive, respectful, and engaged academic environment inside and outside classroom.
- Full version of Student/Faculty Expectations on Teaching and Learning
- http://www.erg.cuhk.edu.hk/upload/StaffStudentExpectations.pdf

Grading System

- Class Attendance (5 marks)
- Homeworks (20 marks)
- 8 Labs (25 marks)
- Midterm Exam (15 marks)
- Final Exam (35 marks)

A student must gain at least 50 marks in order to pass the course.

- Individual lab (academic honesty!)
- About Absence in mid-term
- Class attendance: uReply or in-class quiz Ex: http://www.cse.cuhk.edu.hk/~byu/doc/quiz_example.pdf
- Lecture review
- Bonus question
- Please read your marks from Blackboard (https://blackboard.cuhk.edu.hk)

Embedded Systems

Computing System

- Computing systems are everywhere
- Most of us know general-purpose computers
 - Laptop
 - PC
 - Server
 - Mainframe
 - Supercomputer
- But there is another type of computing system; And it is far more common

An Era of Embedded Computing Systems

Computing system type	Mainframe	Mini computer	Personal computer	Embedded computer
Era	1950s on	1970s on	1980s on	2000s on
Form factor	Multi-cabinet	Multi-board	Single board	Single chip
Owner type	Corporates	Departments	Persons	Things
Users/system	1000s ~ 100s	100s ~ 10s	10s ~ 1s	1s ~ 1/10s
Cost	\$1 Ms +	\$100 Ks +	\$10Ks – \$1Ks +	\$100s-\$1s +
Total units	10Ks +	100Ks +	Billions +	Trillions +

Computers are in here ...

and here

and even here

Definition

- A short name for embedded computing system
- Different from general-purpose computing system, such as desktop computers, it is usually embedded in a larger physical system
- Carry one or a fixed set of specific tasks by design or usage
- Nearly any computing system other than laptop, desktop, server, mainframe, and supercomputer
- About 50 per household and per automobile
- Billions of units produced yearly, versus millions of desktops

- Consumer electronics
 - Digital camera and camcorder
 - Cell phone
 - CD player
 - Wireless router
 - TV

- Blu-ray player
- Microwave oven
- USB key
- Remote control
- Digital watch and clock

Also in your desktops and laptops

- Graphics card
- Sound card
- Network card
- Hard disk
- DVD drive
- Keyboard, mouse
- Touch pad

- LCD monitor
- Even inside laptop battery

In robots

...

...

- Vision system
- Arm and leg control
- In medical instruments
 - Blood pressure monitor
 - Diabetes monitor
- In telecommunications
 - Internet switch and router
 - Mobile phone base station

In aircraft

- Auto pilot system
- Communication system
- •••
- In watercraft
 - Navigation system
 - Radar system
 - •••

•••

- In automobile
 - Engine control system
 - Anti-lock braking system (ABS)
 - Navigation system
 - Collision protection system

- In space shuttle
 - Positioning system
 - Communication system
 - Navigation systems
 - •••
- In satellite
 - Communication system
 - Power control system
 - •••

- In Mars rover
 - Automatic driving system
 - Automatic lab system

Limited functions

- Doing a specific set of tasks repeatedly
- High-end embedded systems are often multi-function systems
- Cell phone, slate ...

Tightly constrained

- Low cost, energy efficient, small, fast, etc.
- Usually must meet the performance requirement (such as speed)

Reactive and even real-time

- Continually reacts to changes in the system's environment
- Some systems must compute certain results in real-time without delay
- ABS, auto-pilot system ...

- Information is the center of the Information Age
- Information is any knowledge, and one possible method to represent information is by data which are quantities with or without natural physical meanings.
- Embedded system is used to collect, convert, store, protect, process, transmit, retrieve, and share information
- Human spend more time to design and let embedded system to do tedious and dangerous jobs

Companies Developing ES

Develop ES applications

• Microsoft, Google, telecom companies, banks ...

Develop ES

• IBM, Apple, Samsung, NEC, Philips, Oracle, Dell, HP, Sony, Nokia, Cisco, Huawei, Lenovo ...

Develop IC for ES

• Intel, AMD, TI, ST, Qualcomm, Broadcom, Xilinx ...

Develop design automation tools for ES

• Cadence, Synopsis, Mentor Graphics ...

Many companies work in multiple areas instead of one

When Machine Learning Meets Hardware

Convolution layer is one of the most expensive layers

- Computation pattern
- Emerging challenges

More and more end-point devices with limited memory

- Cameras
- Smartphone
- Autonomous driving

Hard to distribute large models through over-the-air update

AlphaGo: 1920 CPUs and 280 GPUs, \$3000 electric bill per game

on mobile: drains battery on data-center: increases TCO

Application Category

Both	Datacenter	Edge
Intel, Nvidia, IBM, Xilinx, HiSilicon, Google, Baidu, Alibaba Group, Cambricon, DeePhi, Bitmain, Wave Computing	AMD, Microsoft, Apple, Tencent Cloud,Aliyun, Baidu Cloud, HUAWEI Cloud, Fujitsu, Nokia, Facebook, HPE, Thinkforce, Cerebras, Graphcore, Groq, SambaNova Systems, Adapteva, PEZY	Qualcomm, Samsung, STMicroelectronics, NXP, MediaTek, Rockchip, Amazon_AWS, ARM, Synopsys, Imagination, CEVA, Cadence, VeriSilicon, Videantis, Horizon Robotics, Chipintelli, Unisound, AlSpeech, Rokid, KnuEdge, Tenstorrent, ThinCI, Koniku, Knowm, Mythic, Kalray, BrainChip, Almotive, DeepScale, Leepmind, Krtkl, NovuMind, REM, TERADEEP, DEEP VISION, KAIST DNPU, Kneron, Esperanto Technologies, Gyrfalcon Technology, GreenWaves Technology, Lightelligence, Lightmatter, ThinkSilicon, Innogrit, Kortiq, Hailo,Tachyum

Source: https://basicmi.github.io/Deep-Learning-Processor-List/

Flexibility vs. Efficiency

Computing Spectrum

Course Overview

Overview – Part A

How to build up a Robot?

Overview – Part A

- A1 Sensors
 - Use of different sensors and their characteristics
- A2 Op Amps and Analog Interfacing
 - How to connect sensors to systems

Sensor demo (http://www.youtube.com/watch?v=9NEiBDBXFEQ)

A3 Analog-to-digital conversions ADDA

- Internal operations of different ADDA devices
- A4 PID controller
 - feedback control of motors

Overview – Part B

How to design an embedded system?

B1 HW/SW Co-design

B2 Memory

B3 Clock

B4 Design Style (Optional)

- Demo 1: Self-Balancing Robot https://youtu.be/dQWATsLa30g
- Demo 2: Robot Car w. Color Sensor https://youtu.be/PKCPdWjZCqY
- Demo 3: Robot Hand https://youtu.be/ai94rHHuaXc
- Demo 4: Robot https://youtu.be/1D0e7SS85Xc

Arduino

- https://www.arduino.cc/
- https://youtu.be/nL34zDTPkcs

