

Introduction to Arduino

ZHU Binwu LIU Hongduo

Reference

- Credit to Module 1 and Module 3 from Coursera:
- The Arduino Platform and C programming, UCI

https://www.coursera.org/learn/arduino-platform/

• You can access many tutorials and examples from: <u>https://www.arduino.cc/</u>

- 3 Components
- Workflow
- Arduino Programming
- I/O Pins
- Examples

Outline

3 components

The Arduino Development Board

A development board

- -8-bit microcontroller
- Programming hardware
- USB programming interface
- I/O pins

The Arduino IDE

A software environment

- Cross-complier
- Debugger
- Simulator

- • • •

The Arduino Shields

Special-purpose "Shields"

- Daughter boards
- Unique functionalities
- Easy to attach
- Good libraries provided

The Arduino Development Board

Microcontrollers

- ATmega328 is the processor programmed by user
- ATmega16U2 handles USB communication

ATmega328

The Arduino IDE

- Verify: Compile codes, checks for errors
- Upload: Compile codes, checks for errors, uploads to board

- New: Creates a new sketch
- Open: Opens an existing sketch Î
 - Save: Saves your sketch to a file

Serial Monitor: Opens a windows to communicate with the board

Serial Monitor

	© COM5		п×
			Send
I			
l			
l			
	Autoscroll Show timestamp 9600	baud ~ C	lear output

- Displays serial data sent from the Arduino
- Allows serial data to be sent to the Arduino from the keyboard
- Library functions in the serial library

Basic Setup

- 1. Download the IDE <u>www.arduino.cc/en/Main/Software</u>
 - Easiest to run Windows Installer
 - Also installs USB and other drivers
- 2. Connect the board to your computer
 - Use USB cable
- 3. Launch the Arduino application
 - Start the IDE

Launch the Arduino IDE

4. Open the Blink example: File > Example > Basic > Blink

Run a Program

5. Select your Arduino in the tools > Board menu

- 6. Select your serial port in the Tools > Port menu
 - There should be only one selection (COM3, etc)
- 7. Upload the program with the upload button
 - This writes the program onto the Flash of the Arduino
- 8. The LED with sign "L" should blink

Arduino Programs

- A program is called a Sketch
- C++ program using Arduino library functions
 - Actually almost C
 - You should be familiar with Classes in libraries

Ethernet.begin(mac); Serial.begin(speed); client.print("Hello"); Serial.print("Hello");

Setup() Function

- A sketch does not have a main() func
- Every sketch has a setup() function
 - Executed once when Arduino is powered up
 - Used for initialization operations
 - Return no value, takes no arguments

Void setup() {

. . .

```
sketch_oct09a
void setup() {
  // put your setup code here, to run once:
}
void loop() {
  // put your main code here, to run repeatedly:
```

}

Loop() Function

- Every sketch has a loop() function
 - Executed iteratively as long as the Arduino is powered up
 - loop() starts executing after setup() has finished
 - loop() is the main program control flow
 - Return no value, takes no arguments

Void loop() {

. . .

```
sketch_oct09a
void setup() {
  // put your setup code here, to run once:
}
void loop() {
  // put your main code here, to run repeatedly:
}
```

Input / Output (I/O)

- These functions allow access to the pins
- Void pinMode(pin, mode)
- Set a pin to act as either an input or an output
- pin is the number of pin
 - 0 13 for the digital pins
 - A0-A5 for the analog pins
- mode is the I/O mode the pin is to set
 - INPUT, OUTPUT, or INPUT_PULLUP
 - INPUT_PULLUP acts as input with reversed polarity

Digital Input

int digitalRead(pin)

- Returns the state of an input pin
- Returns either LOW (0 volts) or HIGH (5 volts)

Example:

int pinval;

pinval = digitalRead(3);

• pinval is set to the state of digital pin 3

Digital Output

int digitalWrite(pin, value)

- Assigns the state of an output pin
- Assigns either LOW (0 volts) or HIGH (5 volts)

Example:

digitalWrite(3, HIGH);

• Digital pin3 is set HIGH (5 volts)

Analog Input

int analogRead(pin)

- Returns the state of an analog input pin
- Returns the integer from 0 to 1023
- 0 for 0 volts, 1023 for 5 volts

Example:

int pinval; pinval = analogRead(A3);

• Pin must be an analog pin

Example

• Blink example

Delay

void delay(msec)

- Pauses the program for msec milliseconds
- Useful for human interaction
- Example:

digitalWrite(3, HIGH);

delay(1000);

digitalWrite(3, LOW);

• Pin 3 is HIGH for 1 second

```
// the setup function runs once when you press reset or power the board
void setup() {
    // initialize digital pin LED_BUILTIN as an output.
    pinMode(LED_BUILTIN, OUTPUT):
}
// the loop function runs over and over again forever
void loop() {
    digitalWrite(LED_BUILTIN, HIGH): // turn the LED on (HIGH is the voltage level)
    delay(1000): // wait for a second
    digitalWrite(LED_BUILTIN, LOW): // turn the LED off by making the voltage LOW
    delay(1000): // wait for a second
    digitalWrite(LED_BUILTIN, LOW): // wait for a second
    digitalWrite(LED_BUILTIN, LOW): // wait for a second
```

Example

• CharacterAnlysis example

setup() function: Serial.begin(9600); //set the bit rate for serial port.

loop() function:

Serial.available(): is True if some inputs. Serial.read(): read the data byte. void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {

; // wait for serial port to connect. Needed for native USB port only

```
// send an intro:
```

Serial.println("send any byte and I'll tell you everything I can about it");
Serial.println();

```
void loop() {
   // get any incoming bytes:
   if (Serial.available() > 0) {
     int thisChar = Serial.read();
```

```
// say what was sent:
Serial.print("You sent me: \'");
Serial.write(thisChar);
Serial.print("\' ASCII Value: ");
Serial.println(thisChar);
```

// analyze what was sent:

Lab to do today

- 1st: let LED blink 2 times in per second.
- 2nd: write your name to Arduino through serial port, if the name is strictly correct, then the Arduino will return your Student ID.

Requirement

- ≻No lab report.
- \succ You can take a short video to demo your experiments.
- ≻You are required to upload source code AND video to Blackboard.
- ➢In the 1st experiment, you should show the LED blink-blink during at least 5 seconds in the video.
- ➢In the 2nd experiment, you should show the name you input and your student ID returned by Arduino in the video.

Tips

- Use Tool -> Serial Monitor to input your name and display your student ID.
- Use the syntax to read your name:
- String thisString = Serial.readStringUntil('\n');