CENG4480 2021F Homework 1

Due: Oct. 24, 2021

All solutions should be submitted to the blackboard in the format of PDF/MS Word.

Q1 (10%) The following circuit Figure 1 is a difference amplifier circuit. $U_1=40V, U_2=25V,$ $R_1=6\Omega, R_2=4\Omega, R_3=15\Omega, R_4=20\Omega.$ Please calculate the output voltage of U_o .

Figure 1: Q1 Circuit

Q2 (20%) Given an ideal op-amp circuit below where $R_1 = 1k\Omega$, $R_2 = 2k\Omega$, $R_3 = 3k\Omega$, if I want to obtain a gain of 5, what's the value of the resistor R_4 as shown in the circuit?

Figure 2: Q2 Circuit

Q3 (20%) Given the following amplifier circuit as shown in Figure 3. $R_1 = 1 \text{M}\Omega$, $R_2 = 500 \text{k}\Omega$ and $R_3 = 100\Omega$. Also, I want to acquire a voltage gain $U_o/U_i = -120$, how to choose the value of R_4 ?

Figure 3: Q3 Circuit

- **Q4** (20%) The diagram of amplifier circuit is shown in fig. 4. Given $R_1 = 4k\Omega$, $R_2 = 6k\Omega$ and $R_3 = 12k\Omega$, answer the following questions.
 - 1. Find the output voltage U_o if $U_a = 4V$ and $U_b = -12V$.
 - 2. When $U_b = -12V$, determine the range of U_a for linear operation if the saturation voltage of op-amp is $\pm 12V$.

Figure 4: Q4 Circuit Diagram

- Q5 (20%) In the circuit of Figure 5, $R_3=R_4=R_5=R_6=R_7=R=2R_1=2R_2=100 {\rm k}\Omega$ and $C=1\mu{\rm F}$. Assume the op-amps are ideal. What is the relationship between U_i and U_o
- **Q6** (10%) Draw the output voltage waveform for the circuit below. $R=5k\Omega$ and $C=0.2\mu F$. The input voltage is as follows:

$$U_i = \begin{cases} 2000t, & 0 < t < 2 \text{ ms} \\ 8 - 2000t, & 2 \le t < 4 \text{ ms} \end{cases}$$

Figure 5: Q5 Circuit Diagram