
1

CENG 4480
L09 Memory 2

Reference:
• Chapter 11 Memories
• CMOS VLSI Design—A Circuits and Systems Perspective

• by H.E.Weste and D.M.Harris

Bei Yu

L09 Memory-2

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory
(CAM)

Read/Write Memory
(RAM)

(Volatile)

Read Only Memory
(ROM)

(Nonvolatile)

Static RAM
(SRAM)

Dynamic RAM
(DRAM)

Shift Registers Queues

First In
First Out
(FIFO)

Last In
First Out
(LIFO)

Serial In
Parallel Out

(SIPO)

Parallel In
Serial Out

(PISO)

Mask ROM Programmable
ROM

(PROM)

Erasable
Programmable

ROM
(EPROM)

Electrically
Erasable

Programmable
ROM

(EEPROM)

Flash ROM

Memory Arrays

2

You might be familiar with this figure, as I covered this one two week ago. Today I will cover CAM & ROM.

[click] ROM is misleading that many of them can be written as well.
Compared with RAM, a more useful classification is volatile [ˈvälətl] or nonvolatile. Volatile memory retains its data as long as power is applied, while
nonvolatile memory will hold data.
So ROM is a nonvolatile memory.

[click] CAM determines which address contain that matches specified input data. Essentially, given input data, CAM would determine whether this data is
stored, as well as where is the data.

L09 Memory-2

Read-Only Memories

• Read-Only Memories are nonvolatile
– Retain their contents when power is removed

• Mask-programmed ROMs use one transistor per bit
– Presence or absence determines 1 or 0

3

A ROM is a nonvolatile memory structure in that the state is retained indefinitely—even without power. A ROM array is commonly implemented as a
single-ended NOR array.

BIOS

L09 Memory-2

NOR ROM
• 4-word x 6-bit NOR-ROM

– Selected word-line high
– Represented with dot diagram

4

Word 0: 010101

Word 1: 011001

Word 2: 100101

Word 3: 101010

ROM Array

2:4
DEC

A0A1

Y0Y1Y2Y3Y4Y5

weak
pseudo-nMOS

pullups

Looks like 6 4-input pseudo-nMOS NORs

It’s also called NOR ROM.
1) the selected word-line is pre-charged to high
2) if there is a nmos transistor on the word-line, corresponding bit-line would be discharged to low
[Analyze] word 0 - 3

The contents of the ROM can be symbolically represented with a dot diagram in which dots indicate the presence of 1s, as shown in Figure 12.53. The
dots correspond to nMOS transistors connected to the bitlines, but the outputs are inverted.

L09 Memory-2

EX: NOR ROM
• Draw 4-word 4-bit NOR-ROM structure and dot diagram

5

Word 0: 0100

Word 1: 1001

Word 2: 0101

Word 3: 0000

ROM Array

2:4
DEC

A0A1

Y0Y1Y2Y3Y4Y5

weak
pseudo-nMOS

pullups

L09 Memory-2

NAND ROM
• 4-word x 4-bit NAND-ROM

– All word-lines high with exception of selected row

6

[Analyze] Words 0 - 3: 0100, 1001, 0101, 0000
All the word-lines are pre-charged to high, except the selected row.
1) If one nmos transistor on the row, means this n-transistor is OFF. Then corresponding BL would be 1.
2) If no nmos transistor on the row, the transistors on other row are ON, BL would be discharged to 0.

[Draw] NOR: (+) faster, (-) more expensive
NAND: (+)higher density (no contact to VDD/GND)
 (-) slower (delay grows quadratically with the number of series transistors discharging the bitline. NAND structures with more than 8–16 series
transistors become extremely slow)

L09 Memory-2

EX. NAND ROM
• What’s it function?

7

WL[0]=0:

WL[1]=0:

WL[2]=0:

WL[3]=0:

L09 Memory-2

NOR ROM v.s. NAND ROM
• NOR ROM:

• (+) Faster
• (-) Larger Area (VDD lines)

• NAND ROM:
• (+) High density, small area
• (-) Slower

8

ROM Array

2:4
DEC

A0A1

Y0Y1Y2Y3Y4Y5

weak
pseudo-nMOS

pullups

delay grows quadratically with the number of
series transistors discharging the bitline.

L09 Memory-2

NOR ROM Array Layout*
• Unit cell is 12 x 8 λ (about 1/10 size of SRAM)

9

bit5 bit4 bit3 bit2 bit1 bit0

word0

word1

word2

word3

pseudo-nMOS ROM
red: poly
dark green: nmos
light green: substrate contacts
blue: metal

* encoding method is quite important

7 x 8 for NAND ROM

L09 Memory-2

Row Decoders*
• ROM row decoders must pitch-match with ROM

– Only a single track per word!

10

word0

word1

word2

word3

A0 A1 A0 A1A0 A1 A0 A1

Similar to that in SRAM, the decoder must be pitch-matched to the ROM array. That is, the height of each decoder gate must match the height of the row
it drives.

This figure shows a layout on a pitch that is tighter and independent of the number of inputs.
The blue lines are Metal-1, read lines are poly.
We can see that this is a kind of NOR gate structure, the left pMOS transistors are connected in serious, while the nMOS transistors are connected in
parallel.

L09 Memory-2

Complete ROM Layout*

11

a complete pseudo-nMOS ROM including row decoder, cell array, pMOS pullups, and output inverters.

L09 Memory-2

PROMs and EPROMs*
• Programmable ROMs

– Build array with transistors at every site
– Burn out fuses to disable unwanted transistors

• Electrically Programmable ROMs
– Use floating gate to turn off unwanted transistors
– EPROM, EEPROM, Flash

12

n+

p

GateSource Drain

bulk Si

Thin Gate Oxide
(SiO2)

n+

Polysilicon
Floating Gate

* Programmable ROMs can be fabricated as conventional ROMs fully populated at every site. The user typically configures the ROM in a specialized
PROM programmer before putting it in the system. As there is no way to repair a blown fuse, PROMs are also referred to as one-time programmable
memories.

* We can see this structure is similar to a traditional MOS device, except that an extra poly strip [strip] is inserted between the gate and channel. On top is
the control gate [CG], as in other MOS transistors, but below this there is a floating gate [FG].

* [draw] systematic symbol

* XXX. Applying a high voltage to the control gate causes electrons to jump through the thin oxide onto the floating gate. Injecting the electrons induces
a negative voltage on the floating gate, effectively increasing the threshold voltage to the point that this transistor is always OFF.

Similar structure can be extended to EEPROM and the Flash memory.

L09 Memory-2

NOR / NAND Flash Memory*
• NOR flash: Intel 1988
• NAND flash: Toshiba 1989

• NOR: faster, more expensive
• NAND: higher density

13

[Toshiba’08]

* NOR flash was first introduced by Intel in 1988. NAND flash was introduced by Toshiba in 1989. The two chips work differently. NAND has significantly
higher storage capacity than NOR. NOR flash is faster, but it's also more expensive. Some mobile devices use both NAND and NOR. A pocket PC, for
instance, may use embedded NOR to boot up the operating system and a removable NAND card for all its other memory/storage requirements.
Generally speaking, however, when someone talks about a flash solid state drive, they are referring to NAND flash memory.

* It shall be noted that Flash memory works much faster than traditional EEPROMs because it writes data in chunks, usually 512 bytes [baiz] in size, instead
of 1 byte at a time.

* 2008, 32GB NAND chips fabricated with Toshiba's 43nm process

L09 Memory-2

Building Logic with ROMs
• ROM as lookup table containing truth table

– n inputs, k outputs requires 2n words x k bits
– Changing function is easy – reprogram ROM

• Finite State Machine
– n inputs, k outputs, s bits of state
– Build with 2n+s x (k+s) bit ROM and (k+s) bit reg

14

n
inputs

2
n w

ordlines

ROM Array

k outputs

D
E

C

ROM
inputs outputs

state

n k
s

k
s

L09 Memory-2

Example: RoboAnt
Let’s build an Ant
Sensors: Antennae

 (L,R) – 1 when in contact
Actuators: Legs

 Forward step F
 Ten degree turns TL, TR

Goal: make our ant smart enough to
 get out of a maze
Strategy: keep right antenna on wall
(RoboAnt adapted from MIT 6.004 2002 OpenCourseWare by Ward
and Terman)

15

L R

[anˈtenə]

L09 Memory-216

randomly select one initial point
local Vision
keep right antenna touching the walls

this strategy can guarantee to get out of the maze, but some initial position may be quite ineffective.

L09 Memory-2

Lost in space

• Action: go forward until we hit something
– Initial state

17

[draw]

L09 Memory-2

Bonk!!!

• Action: turn left (rotate counterclockwise)
– Until we don’t touch anymore

18

L09 Memory-2

A little to the right

• Action: step forward and turn right a little
– Looking for wall

19

L09 Memory-2

Then a little to the right

• Action: step and turn left a little, until not touching

20

Wall2 if L=1, then left rotate

L09 Memory-2

Whoops – a corner!

• Action: step and turn right until hitting next wall

21

L09 Memory-2

Simplification

• Merge equivalent states where possible

22

1) Identical output behavior on all input strings
2) continue, until

L09 Memory-2

State Transition Table
S1:0 L R S1:0’ TR TL F

00 0 0 00 0 0 1

00 1 X 01 0 0 1

00 0 1 01 0 0 1

01 1 X 01 0 1 0

01 0 1 01 0 1 0

01 0 0 10 0 1 0

10 X 0 10 1 0 1

10 X 1 11 1 0 1

11 1 X 01 0 1 1

11 0 0 10 0 1 1

11 0 1 11 0 1 1

Lost

RCCW

Wall1

Wall2

Next state Output valuesInputsCurrent state

23

Recall that a state Transition diagram specifies the function of a state machine, not its implementation. Next, we have to convert our specification to gates
and registers.

To do so, we rewrite our state transition diagram as a truth table. Each arc of the graph contributes one or more rows to our truth table.

L09 Memory-2

ROM Implementation
• 16-word x 5 bit ROM

24

ROM
L, R

S1:0

TL, TR, F

S'1:0

S1' S0' TR'TL' F'

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

4:16 D
E

C

S1 S0 L R

one drawback of ROM implementation is that: if there n input signals, there would be 2 to the power of n rows required.

L09 Memory-2

PLAs
• A Programmable Logic Array performs any function

in sum-of-products form.
• Literals: inputs & complements
• Products / Minterms: AND of literals
• Outputs: OR of Minterms

• Example: Full Adder

25

out

s abc abc abc abc
c ab bc ac
= + + +

= + +

AND Plane OR Plane

abc
abc
abc
abc
ab

bc
ac

sa b c
outc

M
interm

s

Inputs Outputs

Compared with ROM, PLA can provide an effective implementation to reduce the ROW#.
A PLA provides a regular structure for implementing combinational logic specified in sum-of-products form. It shall be noted that Any logic function can
be expressed in sum-of-products form; i.e., where each output is the OR (sum) of the ANDs (products) of true and complementary inputs.

The inputs and their complements are called literals. The AND of a set of literals is called a product or minterm. The outputs are ORs of minterms. The
PLA consists of an AND plane to compute the minterms and an OR plane to compute the outputs.

L09 Memory-2

NOR-NOR PLAs
• ANDs and ORs not very efficient in CMOS
• Dynamic or Pseudo-nMOS NORs very efficient
• Use DeMorgan’s Law to convert to all NORs

26

AND Plane OR Plane

abc
abc
abc
abc
ab

bc
ac

s
a b c

outc

AND Plane OR Plane

abc
abc
abc
abc
ab

bc
ac

s
a b c

outc

AND/OR are not efficient since we cannot directly implement them in silicon. In other words, more inverters may be required. On the other hand, we want
to implement circuit with NAND or NOR gates, because they are generally faster and use fewer components than AND or OR gates.

DeMorgan’s law can be used to convert the AND/OR gates to NOR gates. [draw] AND/OR => NOR
We can prove that any logic function can be implemented using only NAND or only NOR gates.

[draw] bc = /(/b + /c)

L09 Memory-2

PLA Schematic & Layout

27

AND Plane OR Plane

abc
abc
abc
abc
ab

bc
ac

s
a b c

outc

Both AND plane and OR plane are implemented through the psudo-pMOS NOR gate structures.

[draw]
1) both b=c=0, bit-lines \b \c would be selected
2) both n-transistors are OFF
3) bc line is HIGH
4) c_out before inverter would be discharged to LOW

Layout: nmos, inverters, psudo-pmos pull-up networks, VDD/GND

L09 Memory-2

PLAs vs. ROMs

• The OR plane of the PLA is like the ROM array
• The AND plane of the PLA is like the ROM decoder
• PLAs are more flexible than ROMs

– No need to have 2n rows for n inputs
– Only generate the minterms that are needed
– Take advantage of logic simplification

28

L09 Memory-2

RoboAnt PLA*
• Convert state transition table to logic
• Karnaugh map

29

S1:0 L R S1:0’ TR TL F
00 0 0 00 0 0 1
00 1 X 01 0 0 1
00 0 1 01 0 0 1
01 1 01 0 1 0
01 0 1 01 0 1 0
01 0 0 10 0 1 0
10 X 0 10 1 0 1
10 X 1 11 1 0 1
11 1 X 01 0 1 1
11 0 0 10 0 1 1
11 0 1 11 0 1 1

1 0

0

1 0

TR S S
TL S

F S S

=

=

= +

If outputs are fed back to inputs through registers,
PLAs also can form finite state machines.

The row and column indices are ordered in Gray code, so that only one variable changes between each pair of adjacent cells. Each cell of the completed
Karnaugh map contains a binary digit representing the function's output for that combination of inputs.

Karnaugh is an American scientist, developing the Karnaugh map in 1954 when he was in Bell Labs. Then he worked for IBM for many years. Interestingly,
he is famous and IEEE Fellow for the logic simplification and encoding, but he got his PhD degree from Yale University in Physics.

L09 Memory-2

EX. RoboAnt Dot Diagram*

30

1 0 1 0

1 0

1 0

0

1 0

1'

0 '

S S S LS LRS

S R LS LS

TR S S
TL S

F S S

= + +

= + +

=

=

= +

L09 Memory-2

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory
(CAM)

Read/Write Memory
(RAM)

(Volatile)

Read Only Memory
(ROM)

(Nonvolatile)

Static RAM
(SRAM)

Dynamic RAM
(DRAM)

Shift Registers Queues

First In
First Out
(FIFO)

Last In
First Out
(LIFO)

Serial In
Parallel Out

(SIPO)

Parallel In
Serial Out

(PISO)

Mask ROM Programmable
ROM

(PROM)

Erasable
Programmable

ROM
(EPROM)

Electrically
Erasable

Programmable
ROM

(EEPROM)

Flash ROM

Memory Arrays*

31

You might be familiar with this figure, as I covered this one two week ago. Today I will cover CAM & ROM.

[click] CAM determines which address contain that matches specified input data. Essentially, given input data, CAM would determine whether this data is
stored, as well as where is the data.

[click] ROM is misleading that many of them can be written as well.
Compared with RAM, a more useful classification is volatile [ˈvälətl] or nonvolatile. Volatile memory retains its data as long as power is applied, while
nonvolatile memory will hold data.
So ROM is a nonvolatile memory.

L09 Memory-2

CAMs*
• Extension of ordinary memory (e.g. SRAM)

– Read and write memory as usual
– Also match to see which words contain a key

32

CAM

adr data/key

match
read

write

shows the symbol for a content-addressable memory (CAM). The CAM is like a conventional SRAM that can be read or written given adr and data. In
addition, CAM also performs matching operations. For each word, if the CAM contains a specified data/key, the related match-line would be high.

[draw] A common application of CAMs is translation look-aside buffers (TLBs) in microprocessors supporting virtual memory. The virtual address is given as
the key to the TLB CAM. If this address is in the CAM, the corresponding match-line is asserted. This match-line can serve as the word-line to access a
RAM containing the associated physical address.

L09 Memory-2

10T CAM Cell*
• Add four match transistors to 6T SRAM

– 56 x 43 λ unit cell

33

bit bit_b

word

match

cell

cell_b

10T CAM cell consisting of a normal SRAM cell with additional transistors to perform the match.
[draw]
Read: Precharge bit, bit_b; Raise wordline
Write: Drive data onto bit, bit_b; Raise wordline
Match: 1) Pre-charge match-line, wordline low, 2) drive data onto bit bit_b, 3) if match, match-line down
(if cell=bit=0)
(The match-line is either pre-charged or pulled high as a distributed pseudo-nMOS gate. The key is placed on the bitlines. If the key and the value stored
in the cell differ, the match-line will be pulled down.)

The key can contain a “don’t care” by setting both bit and bit_b low.Sometimes the key is provided on separate search-lines rather than on the bitlines to
reduce the capacitance and power consumption of a search.

The inside front cover shows a layout of this cell in a 56 × 43 area; CAMs generally have about twice the area of SRAM cells.

L09 Memory-2

CAM Cell Operation*
• Read and write like ordinary SRAM
• For matching:

– Leave wordline low
– Precharge matchlines
– Place key on bitlines
– Matchlines evaluate

• Miss line
– Pseudo-nMOS NOR of match lines
– Goes high if no words match

34

row
 decoder

weak

miss
match0

match1

match2

match3

clk

column circuitry

CAM cell

address

data

read/write

4 × 4 CAM array. Like an SRAM, it consists of an array of cells, a decoder, and column circuitry. In addition, each row also produces a dynamic match-line.
The match-lines are pre-charged with the clocked pMOS transistors.

The miss signal is produced with a distributed pseudo-nMOS NOR.

