CENG 4480 Midterm (Fall 2018)

Name: \qquad
ID:

Solutions

Q1 (40\%) Check or fill the correct answer:

1. A circuit where the input signal power is less than the output signal power is called amplifier/attenuator.
2. The effect of the positive/negative feedback connection from output to inverting input is to force $\overline{V^{+}}$to be equal to V^{-}. A Schmitt Trigger based on inverting comparator has a positive/negative feedback.
3. Bandwidth is defined as the frequency range over which the voltage gain of the amplifier is above \qquad $\%$ or -3 dB of its maximum output value.
4. Given a differentiator circuit and a sine wave as input signal, the waveform of the output is cosine/square.
5. The sampling rate of the ADC used depends on the maximum frequency $f_{\max }$ of input signal. According to Nyquist sampling theorem, the sampling frequency $f_{\text {sampling }}$ should be greater/lesser or equal to two/three times $f_{\text {max }}$.
6. When measuring angles by IMU, the measurement from gyroscopes/accelerometers has the tendency to drift.
7. high-pass filter/sample-and-hold circuit is used to reduce the glitch.
8. Given the same corner frequency, which low-pass filter has a better filtering performance? one-pole low-pass filter /two-pole low-pass filter
9. Give a reason why Arduino is so popular. \qquad
10. Light-to-voltage optical sensors contains photodiode/amplifier to sense light intensity change.

A1 1. amplifier
2. negative, positive
3. 70.7
4. cosine
5. greater, two
6. gyroscopes
7. sample-and-hold circuit
8. two-pole low-pass filter
9. open-source hardware; cheap; modular...
10. photodiode

Q2 (15\%) Determine the output voltage (i.e. the mathematical expression of $\left.V_{\text {out }}(t)\right)$ for the integrator circuit of Figure 1 a if the input is a square wave of amplitude $\pm A$ and period T shown in Figure 1b. Try to sketch the waveform of output. Assume $T=100 \mathrm{~ms}$, $C_{F}=0.1 \mu F, R_{s}=100 k \Omega$ and ideal op-amp. The square wave starts at $t=0$ and therefore $V_{\text {out }}(0)=0$.

Figure 1: (a) Op-amp integrator; (b) Input of a square wave.

A2 We write the expression for the output of the integrator:

$$
\begin{align*}
v_{\text {out }}(t) & =-\frac{1}{R_{s} C_{F}} \int_{-\infty}^{t} v_{s}\left(t^{\prime}\right) d t^{\prime} \\
& =-\frac{1}{R_{s} C_{F}}\left(\int_{-\infty}^{0} v_{s}\left(t^{\prime}\right) d t^{\prime}+\int_{0}^{t} v_{s}\left(t^{\prime}\right) d t^{\prime}\right) \\
& =-\frac{1}{R_{s} C_{F}} \int_{0}^{t} v_{s}\left(t^{\prime}\right) d t^{\prime} . \tag{1}
\end{align*}
$$

Next, we note that we can integrate the square wave in a piecewise fashion by observing that $v_{s}(t)=A$ for $0 \leq t<T / 2$ and $v_{s}(t)=-A$ for $T / 2 \leq t<T$. We consider the first half of the waveform:

$$
\begin{align*}
v_{\text {out }}(t) & =-\frac{1}{R_{s} C_{F}} \int_{0}^{t} v_{s}\left(t^{\prime}\right) d t^{\prime} \\
& =-100 A t \quad 0 \leq t<T / 2 \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
v_{\text {out }}(t) & =v_{\text {out }}\left(\frac{T}{2}\right)-\frac{1}{R_{s} C_{F}} \int_{T / 2}^{t} v_{s}\left(t^{\prime}\right) d t^{\prime} \\
& =-100 A \frac{T}{2}+100 A\left(t-\frac{T}{2}\right) \\
& =-100 A(T-t) \quad T / 2 \leq t<T . \tag{3}
\end{align*}
$$

Since the waveform is periodic, the above result will repeat with period T, as shown in Figure 2.

Q3 (15\%) Assume op-amps are ideal. Given $R_{1}=0.2 M \Omega, R_{2}=0.5 M \Omega, R_{3}=2 M \Omega$, $R_{4}=5 k \Omega, R_{5}=2 M \Omega$, and $C_{1}=2 \mu F, C_{2}=0.5 \mu F$, derive the differential equation

Figure 2: The sketch of output of integrator.

Figure 3: Analog computer simulation of unknown system.
corresponding to the analog computer simulator of Figure 3, i.e. the mathematical relationship between f and x. Note that $f(t)$ is input signal, y and z are outputs of corresponding op-amps.

A3 We start the analysis from the right-hand side of the circuit, to determine the intermediate variable z as a function of $x(t)$:

$$
\begin{equation*}
x=-\frac{R_{5}}{R_{4}} z=-400 z \tag{4}
\end{equation*}
$$

Next, we move to the left to determine the relationship between y and z:

$$
\begin{equation*}
z=-\frac{1}{R_{3} C_{2}} \int y\left(t^{\prime}\right) d t^{\prime} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
y=-\frac{d z}{d t} . \tag{6}
\end{equation*}
$$

Finally, we determine y as a function of x and f :

$$
\begin{align*}
y & =-\frac{1}{R_{2} C_{1}} \int x\left(t^{\prime}\right) d t^{\prime}-\frac{1}{R_{1} C_{1}} \int f\left(t^{\prime}\right) d t^{\prime} \\
& =-\int\left[x\left(t^{\prime}\right)+2.5 f\left(t^{\prime}\right)\right] d t^{\prime} \tag{7}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{d y}{d t}=-x-2.5 f . \tag{8}
\end{equation*}
$$

Substituting the expressions into one another and eliminating the variables y and z, we obtain the differential equation in x :

$$
\begin{align*}
x & =-400 z \\
\frac{d x}{d t} & =-400 \frac{d z}{d t}=400 y \\
\frac{d^{2} x}{d t^{2}} & =400 \frac{d y}{d t}=-400(x+2.5 f) . \tag{9}
\end{align*}
$$

Q4 (15\%)

For the DAC circuit shown in Figure 4 (using an ideal op-amp), what value of R_{F} will givean output range of $-15 \leq V_{0} \leq 0 V$? Assume that logic $0=0 \mathrm{~V}$ and $\operatorname{logic} 1=5 \mathrm{~V}$.

Figure 4: RF-DAC.

A4 We have the above equation:

$$
\begin{equation*}
\frac{-V_{0}}{R_{F}}=\left(\frac{Q_{A}}{8 k \Omega}+\frac{Q_{B}}{4 k \Omega}+\frac{Q_{C}}{2 k \Omega}+\frac{Q_{D}}{1 k \Omega}\right) \times 5 V \tag{10}
\end{equation*}
$$

when input equals $0000, V_{0}=0 \mathrm{~V}$, when input equals $1111, V_{0}=-15 \mathrm{~V}$. So we get:

$$
\begin{equation*}
R_{F}=\frac{15 \times 8}{15 \times 5}=\frac{8}{5} K \Omega \tag{11}
\end{equation*}
$$

Q5 (15\%)

Assume the linear estimate system equation is $\boldsymbol{x}_{t+1}=\boldsymbol{A} \boldsymbol{x}_{t}+\boldsymbol{B} \boldsymbol{u}_{t+1}+\boldsymbol{w}_{t}$. Given a second-autoregression random series:

$$
\begin{equation*}
x(t)=2.14 x(t-1)-0.50 x(t-2)+u(t)+\omega_{t} \tag{12}
\end{equation*}
$$

Kalman Filter is used to estimate $x(t)$ (Here $x(t)$ is a scalar). Try to give the formulations of state transition matrices $\boldsymbol{A}, \boldsymbol{B}$, and noise vector \boldsymbol{w}_{t}.

$$
\boldsymbol{A}=\left(\begin{array}{cc}
0 & 1 \tag{13}\\
-0.50 & 2.14
\end{array}\right)
$$

$$
\begin{equation*}
\boldsymbol{B}=\binom{0}{1} \tag{14}
\end{equation*}
$$

or

$$
\begin{gather*}
\boldsymbol{B}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \tag{15}\\
\boldsymbol{w}_{t}=\binom{0}{\omega_{t}} \tag{16}
\end{gather*}
$$

