CENG4480 Homework 2

Due: Nov. 13, 2018

Solutions

Q1 The circuit shown in Figure 1 represents a simple 4-bit digital-to-analog converter. Each switch is controlled by the corresponding bit of the digital number if the bit is 1 the switch is up; if the bit is 0 the switch is down. Let the digital number be represented by $b_{3} b_{2} b_{1} b_{0}$. Please answer the following two questions:
(1) Determine an expression relating v_{o} to the binary input bits.
(2) Use this converter, design another 4-bit digital-to-analog converter whose output is given by

$$
\begin{equation*}
v_{o}=-\frac{1}{10}\left(8 b_{3}+4 b_{2}+2 b_{1}+b_{0}\right) V \tag{1}
\end{equation*}
$$

Figure 2: RF DAC.

Figure 1: 4-bit DAC.

A1 (1) Assuming the binary input bits are $A_{3}, A_{2}, A_{1}, A_{0}$. then we have:

$$
\begin{gather*}
-\frac{V_{0}}{R_{2}}=\frac{A_{3} V}{R_{1}}+\frac{A_{2} V}{2 R_{2}}+\frac{A_{1} V}{8 R_{1}} \tag{2}\\
V_{0}=-\frac{\left(8 A_{3}+4 A_{2}+2 A_{1}+A_{0}\right) V R_{2}}{8 R_{1}} \tag{3}
\end{gather*}
$$

(2)

$$
\begin{equation*}
\frac{R_{2}}{8 R_{1}}=\frac{1}{10} \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{R_{2}}{R_{1}}=\frac{4}{5} \tag{5}
\end{equation*}
$$

Q2 For the DAC circuit shown in Figure 2 (using an ideal op-amp), what value of R_{F} will givean output range of $-10 \leq V_{0} \leq 0 \mathrm{~V}$? Assume that logic $0=0 \mathrm{~V}$ and logic $1=5 \mathrm{~V}$.

A2 We have the above equation:

$$
\begin{equation*}
\frac{-V_{0}}{R_{F}}=\frac{\left(8 Q_{A}+4 Q_{B}+2 Q_{C}+Q_{D}\right) \times 5 V}{1 k \Omega} \tag{6}
\end{equation*}
$$

when input equals $0000, V_{0}=0 \mathrm{~V}$, when input equals $1111, V_{0}=-10 \mathrm{~V}$. So we get:

$$
\begin{equation*}
R_{F}=\frac{10}{15 \times 5}=\frac{2}{15} K \Omega \tag{7}
\end{equation*}
$$

Q3 A simple Infra-Red Sensor system to detect passing human is presented as in Figure 3. A and B are IR Sensors which will generate different output voltages for different infra-red intensity, and higher voltage level corresponds to high light intensity.
(1) Explain how this system works for counting passing pedestrians.
(2) To increase counting accuracy, usually B is covered with materials that can reflect infra-red light. Explain why.

Figure 3: IR-System.

A3 (1) When pedestrians pass over IR Sensor, they will approach and deviate the sensor, which corresponds to voltage pulses V_{A} at the output of it. We can simply count pulse number for passing pedestrian.
(2) When Sensor B is covered with infra-red reflection materials, it can generate pulses V_{B} caused by non-infra-red wave. We can reduce wrongly counted number by subtract V_{B} from V_{A} to avoid counting noise signal.

Q4 Exemplify the working principles of sensors that measure: (1) Flow; (2) Temperature; (3) Pressure; (4) Motion; (5) Liquid Level.

A4 Refer to textbook "Principles and Applications of Electrical Engineering" Table 15.1
Q5 Briefly describe how PID affects motor control.
A5 Refer to lecture 07 slides, page 22-24.

1. Proportional Gain K_{p} : Larger K_{p}, faster response, but higher instability.
2. Integral Gain K_{i} : Larger K_{i}, eliminate steady state error, but larger overshoot.
3. Derivative Gain K_{d} : Larger K_{d}, reduce overshoot, but slower response.

Q6 Given a linear system

$$
\left\{\begin{align*}
\boldsymbol{x}_{t} & =\boldsymbol{A}_{t-1} \boldsymbol{x}_{t-1}+\boldsymbol{\omega}_{t-1}, \tag{8}\\
\boldsymbol{z}_{t} & =\boldsymbol{B}_{t} \boldsymbol{x}_{t}+\boldsymbol{v}_{t} \\
\boldsymbol{v}_{t} & =\boldsymbol{C}_{t-1} \boldsymbol{v}_{t-1}+\boldsymbol{n}_{t-1}
\end{align*}\right.
$$

where $\boldsymbol{\omega}_{t}$ and \boldsymbol{n}_{t} are independent and obey Gaussian distribution zero-mean and covariance \boldsymbol{Q}_{t} and \boldsymbol{R}_{t}, respectively. Please give the estimate equation and measurement equation of the system.

A6

$$
\begin{gather*}
\binom{\boldsymbol{x}_{t}}{\boldsymbol{v}_{t}}=\left(\begin{array}{cc}
\boldsymbol{A}_{t-1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{C}_{t-1}
\end{array}\right)\binom{\boldsymbol{x}_{t-1}}{\boldsymbol{v}_{t-1}}+\binom{\boldsymbol{\omega}_{t-1}}{\boldsymbol{n}_{t-1}} \tag{9}\\
\boldsymbol{z}_{t}=\left(\begin{array}{ll}
\boldsymbol{B}_{t} & \boldsymbol{I}
\end{array}\right)\binom{\boldsymbol{x}_{t}}{\boldsymbol{v}_{t}} \tag{10}
\end{gather*}
$$

Q7 Given two Gaussian distributions $N\left(x_{0} ; \mu_{0}, \sigma_{0}\right)$ and $N\left(x_{1} ; \mu_{1}, \sigma_{1}\right)$, try to give the expectation and variance of a new distribution which is the product of these two Gaussian distributions.

A7 For detailed proof, refer to the first part of "Products and Convolutions of Gaussian Probability Density Functions’"

$$
\begin{gather*}
\mu_{2}=\mu_{0}+\frac{\sigma_{0}^{2}\left(\mu_{1}-\mu_{0}\right)}{\sigma_{0}^{2}+\sigma_{1}^{2}} \tag{11}\\
\sigma_{2}^{2}=\sigma_{0}^{2}-\frac{\sigma_{0}^{4}}{\sigma_{0}^{2}+\sigma_{1}^{2}} \tag{12}
\end{gather*}
$$

Q8 For the 4-bit R-2R DAC, calculate V_{0} in terms of $V_{b, 0}-V_{b, 4}$ if $V_{r e f}$ is grounded (Figure4).

Figure 4: R-2R DAC.

Figure 5: Load of R-2R ADC

A8 As shown in Figure 5. first we calculate the equivalence seen from $V_{o 3}$,

$$
\begin{equation*}
R_{e q}=R \tag{13}
\end{equation*}
$$

Get contribution at $V_{o 3 i}$ of each digital input $V_{b i}, \mathrm{i}=0,1,2,3$ separately, it's easy to derive from Thevenin equivalent analysis,

$$
\begin{align*}
& V_{o 30}=\frac{V_{b 0}}{16} \tag{14}\\
& V_{o 31}=\frac{V_{b 1}}{8} \tag{15}\\
& V_{o 32}=\frac{V_{b 2}}{4} \tag{16}\\
& V_{o 33}=\frac{V_{b 3}}{2} \tag{17}
\end{align*}
$$

then, we have,

$$
\begin{equation*}
V_{o 3}=\frac{V_{b 0}}{16}+\frac{V_{b 1}}{8}+\frac{V_{b 2}}{4}+\frac{V_{b 3}}{2} \tag{19}
\end{equation*}
$$

Using the quality of op amp,

$$
\begin{equation*}
V_{o}=\frac{V_{b 0}}{16}+\frac{V_{b 1}}{8}+\frac{V_{b 2}}{4}+\frac{V_{b 3}}{2} \tag{20}
\end{equation*}
$$

Q9 [UPDATED] Assume the liner estimate system equation is $\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+\mathbf{w}_{t}$. Given a second-autoregression random series:

$$
\begin{equation*}
x(t)=2.32 x(t-1)-0.76 x(t-2)+\omega_{t} \tag{21}
\end{equation*}
$$

Kalman Filter is used to estimate $x(t)$ (Here $x(t)$ is a scalar). Try to give the formulations of state transition matrix \mathbf{A} and noise vector \mathbf{w}_{t}.

A9

$$
\begin{gather*}
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-0.76 & 2.32
\end{array}\right) \tag{22}\\
\mathbf{w}_{t}=\binom{0}{\omega_{t}} \tag{23}
\end{gather*}
$$

