CENG4480 Homework 1

Due: Oct. 21, 2018

- Small-Signal Gain: For given amp circuits, small changes of input $\Delta V_{i n}$ will cause output change of $\Delta V_{\text {out }}$. Small-signal gain is defined by $\frac{\Delta V_{\text {out }}}{\Delta V_{\text {in }}}$.

Q1 (10\%) Given a non-inverting amplifier as shown in Figure 1, $R_{1}=3 R_{2}$ and $A_{0}=1000$, calculate the exact finite gain. Then determine the gain difference if the circuit is expected to have an ideal gain under $A_{0}=\infty$.

Figure 1: Non-inverting Amplifier.

Q2 (10\%) An op-amp exhibits the following nonlinear characteristic:

$$
\begin{equation*}
V_{\text {out }}=\alpha \arctan \left[\beta\left(V_{\text {in } 1}-V_{\text {in } 2}\right)\right] . \tag{1}
\end{equation*}
$$

Determine the small-signal gain of the op amp in the case $V_{i n 1} \approx V_{i n 2}$. (Hint: use Taylor expansion of arctan and definition of aforementioned small-signal gain.)

Q3 (10\%) In the circuit of Figure 2, $R_{1}=R_{2}=R^{\prime}=R_{f}=R=100 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$. Assume the op-amps are ideal.

Figure 2: Voltage Follower.

1. (6\%) The relationship between U_{i} and U_{o} ($U_{o 1}$ is unknown).
2. (4\%) Assume that when the time $t=0, U_{o}=0 \mathrm{~V}$ and U_{i} jumps from 0 V to $-1 V$. How long will the U_{o} take to change from 0 V to 6 V ?

Q4 (15\%) Determine the output voltage (i.e. the mathematical expression of $V_{\text {out }}(t)$) for the integrator circuit of Figure 3 if the input is a square wave of amplitude $\pm A$ and period T shown in Figure 3b, Assume $T=10 \mathrm{~ms}, C_{F}=1 \mu F, R_{s}=10 k \Omega$ and ideal op-amp. The square wave starts at $t=0$ and therefore $V_{\text {out }}(0)=0$.

(a)

(b)

Figure 3: (a) Op-amp integrator; (b) Input of a square wave.

Q5 (20\%) Assume op-amps are ideal. Given $R_{1}=0.4 \mathrm{M} \Omega, R_{2}=R_{3}=R_{5}=1 \mathrm{M} \Omega$, $R_{4}=2.5 \mathrm{k} \Omega$ and $C_{1}=C_{2}=1 \mu F$, derive the differential equation corresponding to the analog computer simulator of Figure 4, i.e. the mathematical relationship between f and x. Note that $f(t)$ is input signal, y and z are outputs of corresponding op-amps.

Figure 4: Analog computer simulation of unknown system.

Q6 (10\%) Let us consider the Schmitt Trigger shown in Figure 5

1. (5%) Due to the manufacturing defects, a parasitic resister R_{3} occurs between the output node and ground, calculate the reference voltages.
2. (5%) If the parasitic device is a capacitor C, sketch $v_{\text {out }}$ versus $v_{i n}$. Label the key coordinates on the curve.

Q7 (10\%) Compute and sketch the output voltage of the op-amp in Fig. 6. Given $R_{S}=1 \mathrm{k} \Omega$, $R_{F}=10 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega, V_{S}^{+}=15 \mathrm{~V}, V_{S}^{-}=-15 \mathrm{~V}, v_{s}(t)=2 \sin (1000 t)$. Repeat the problem if $V_{S}^{+}=20 \mathrm{~V}$ and $V_{S}^{-}=-20 \mathrm{~V}$. Assume the op-amp is supply voltage-limited.

Figure 5: Schmitt Trigger.

Figure 6: Inverting Amplifier.

Q8 (15\%) Determine the closed-loop voltage gain as a function of frequency (i.e. $A(j \omega)=$ $\frac{V_{\text {out }}(j \omega)}{V_{s}(j \omega)}$) for the op-amp circuit of Fig. 7. Assume the op-amp is ideal. Given only R_{1}, R_{2} and $\omega_{0}, R_{2} C=\frac{L}{R_{1}}=\omega_{0}$. (Hint: the impedance of a inductor L equals to $j \omega L$.)

Figure 7: A second-order low-pass filter.

