香港中文大學

The Chinese University of Hong Kong

CENG4480
 Lecture 06：Sound Record

Bei Yu

byu＠cse．cuhk．edu．hk
（Latest update：October 18，2017）
Fall 2017

Overview

Timer Configuration

UART Configuration

ADC Configuration

Autocorrelation

Supplementary

Overview

Timer Configuration

UART Configuration

ADC Configuration

Autocorrelation

Supplementary

PC \& PR

Prescale Counter (PC)

32-bit register which controls division of PCLK. It is incremented on every PCLK.

Prescale Register (PR)

32 -bit register which specifies the maximum value of PC.

- Once PC reaches the value in PR, it will be reset.
- TODO: Please set the value of PR of timer 0(TOPR) in function "void init_timer(void)".

TC \& MR

Timer Counter (TC)

32-bit register which is incremented once PC reaches its terminal count.

Match Register (MR)

32-bit register whose value is continuously compared to the TC value. When the two values are equal, actions will be triggered automatically.

- MRO-MR3 correspond to channel0-channel3.
- In function "void init_timer (void)", T0MR0=691, which means the MR0 of timer 0 is set to 691.

Relationships among PC \& PR \& TC

- When PC reaches the value stored in PR, TC is incremented
- PC is reset on the next PCLK.
- When PR $=0$, TC increments on every PCLK

Relationships among PC \& PR \& TC

- When PC reaches the value stored in PR, TC is incremented
- PC is reset on the next PCLK.
- When PR $=0$, TC increments on every PCLK
- When PR = 1, TC increments every 2 PCLKs

Considering that $\mathrm{PR}=0, \mathrm{MR}=691, \mathrm{PCLK}$ is 13.824 MHz . Calculate interrupt frequency. How about when $P R=2$?

Interrupt Register (IR)

Bit	Symbol
0	MR0 Interrupt
1	MR1 Interrupt
2	MR2 Interrupt
3	MR3 Interrupt
4	CR0 Interrupt
5	CR1 Interrupt
6	CR2 Interrupt
7	CR3 Interrupt

- Name: T0IR for timer 0, T1IR for timer 1. (This rule also applies to other timer registers)
- Setting corresponding IR bit to 1 will reset the interrupt.
- For example, 'TOIR $=0 \times 01$ ' will write " 1 " to bit [0], which will reset the MR0 interrupt.

An Example

The relation between PR, PC and TC , with $\mathrm{PR}=2, \mathrm{MR}=6$

Match Control Register (MCR)

- MCR: 16-bit register which is used to control the operations to be performed when "Match Event" happens.
- Bit [0] - Bit [2] correspond to MR0. Bit [3] - Bit [5] correspond to MR1 and so on.
- Bit [13] - Bit [15] are not defined.

Bit	Symbol	Value	Description
0	MROI	1	Interrupt on MRO: an interrupt is generated when MR0 matches the value in the TC.
1		0	This interrupt is disabled
	MROR	1	Reset on MRO: the TC will be reset if MRO matches it.
2	MROS	0	Feature disabled.
		0	Stop on MRO: the TC and PC will stop and TCR[0]=0 if MRO matches the TC.
			Feature disabled.

TODO: set MCR of timer 0 in the function void init_timer (void).

Considering the figure of Timer 0 above, what is the corresponding MCR value?

The relation between PR, PC and TC, with $P R=2, M R=6$

Overview

Timer Configuration

UART Configuration

ADC Configuration

Autocorrelation

Supplementary

Divisor Latch Registers: Baudrate Calculation

- The UODLL and UODLM registers together form a 16 bit divisor.
- UODLL contains the lower 8 bits of the divisor.
- UODLM contains the higher 8 bits of the divisor.

If Fractional Divider Register(refer to datasheet) is not set, the baudrate can be calculated by

$$
U A R T 0_{\text {baudrate }}=\frac{\mathrm{PCLK}}{16 \times(256 \times \mathrm{U} 0 \mathrm{DLM}+\mathrm{U} 0 \mathrm{DLL})}
$$

In the lab 4, we need to set the baudrate to be 57600. Please set UODLL and UODLM in the function void Init_Serial_A(void)

Data Buffer Register \& Line Status Register (LSR)

- Receiver Buffer Register (RBR): contains the oldest received byte.
- Transmit Holding Register (THR): contains the newest byte can be written via the bus interface.
- LSR is read-only, and provides status information on the TX and RX blocks.
- Bit [0] of LSR indicates whether RBR is empty or not.
- Bit [5] of LSR indicates whether THR is empty or not.

Data Buffer Register \& Line Status Register(LSR)

- Remember to check the status of RBR/THR before read/send operation.
- Based on this, fill in the condition of the "while loop" in the function char getchar(void) and void sendchar (char ch)

Overview

Timer Configuration
\title{ UART Configuration }

ADC Configuration

Autocorrelation

Supplementary

A/D Control Register(ADCR)

ADCR is used for setting configuration.

- Bit [7:0]: SEL field selects which pins are sampled.
- Bit [15:8]: CLKDIV determines how much the PCLK is divided by. The divided clk is used for AD conversion.
- Bit [21]: PDN selects the ADC mode.
- Bit [26:24]: START determines when to start conversion.

Example

In the function "unsigned char read_sensor (int channel)"

- ADCR=0x1<<channel: sets value 0 to the bit [0], which means pin 0 is used for sampling.
- $\operatorname{ADCR} \mid=0 \times 1200200$: bit [9], bit [21], bit [24] are set to 1 , which define CLKDIV $=0 \times 02 \rightarrow$ sampling rate $=\frac{\text { PCLK }}{2}$
PDN $=1, \rightarrow$ operational mode
START $=001, \rightarrow$ start conversion now

A/D Data Registers(ADDR)

ADDRs have 32-bit which include the ADC result and the ADC completion flags.

- Bit [15:6]: 10 bits ADC result.
- Bit [31]: Completion flag. '1' indicates ADC is completed.

Please write codes to extract the ADC result in the same function. For simplicity, you just need to extract bit [15:8] of ADDR in this lab.

Overview

Timer Configuration
UART Configuration
ADC Configuration

Autocorrelation

Supplementary

Fundamental Frequency

- The fundamental frequency f_{0} is the lowest frequency of a periodic waveform.
- The period of fundamental frequency is $t_{0}=\frac{1}{f_{0}}$
- The term "lag" denotes the period expressed in samples: $j=t_{0} \times f_{s}$, where f_{s} is sampling frequency.

Fundamental Frequency Detection-Autocorrelation Function

Given a discrete signal x_{n} and the mean value m, autocorrelation R at lag j is defined as:

$$
R(j)=\sum_{n}\left(x_{n}-m\right)\left(x_{n-j}-m\right)
$$

- The x_{n-j} can be seen as signal x_{n} with a delay j.
- The larger R is, the more they "match".
- When $j=0$, autocorrelation reaches the maximum, because they are exactly matched.
- But $j=0$ indicates the signal is not periodic, which is not considered, so we need find $j>0$ that maximizes R.

Autocorrelation

$$
R(j)=\sum_{n}\left(x_{n}-m\right)\left(x_{n-j}-m\right)
$$

You are going to calculate the R based on the codes in the report. Try these 2 ways and to see if there are any differences:

1. $m=$ mean value of X
2. $m=$ minimum value of X

Overview

Timer Configuration
UART Configuration
ADC Configuration
Autocorrelation

Supplementary

CCLK \& PCLK

- CCLK: ARM processor clock frequency. The value is defined by oscillator output frequency $F_{\text {Osc }}$ and register PLLCFG
- PCLK: peripheral clock. The value is defined by CCLK and register APBDIV.
- In lab 4, PCLK $=\frac{\text { Fosc } \times 5}{4}$.

Reminder

- Note that the initial value of the register is set by the file "startup.s", which is the initialization file of the software you use.
- The initial value may be a little different from its reset value.

