CENG 4480 Midterm (Fall 2017)

Name: \qquad
ID:

Solutions

Q1 (40\%) Check or fill the correct answer:

1. A circuit where the input signal power is less than the output signal power is called amplifier/attenuator.
2. In an ideal op amplifier, $V_{i n+}>/=/<V_{\text {in- }}$, since it has infinite/finite open-loop gain.
3. A amplifier with input voltage of 1 mv and output voltage 1 V has gain _-- dB .
4. A capacitor can be regarded as an open circuit when a high/low frequency signal is input.
5. A Schmitt Trigger based on inverting comparator has a positive/negative feedback.
6. --- is the minimum number of bits required to digitize an analog signal with a resolution of 1%. (Resolution is the ratio between minimum voltage that can be sensed and the input voltage range.)
7. high-pass filter/sample-and-hold circuit is used to reduce the glitch.
8. Accelerometer/Gyroscope/Strain Gauge is usually used to measure rotation angle.
9. Light-to-voltage optical sensors contains photodiode/amplifier to sense light intensity change.
10. In PID control, decreasing proportional gain will lead to the faster/slower response. And we will get faster/slower elimination of steady state error by adding integral gain, while increasing/decreasing settling time and overshot with a larger derivative gain.

Q2 (20\%) The integrator of Fig. 1 senses an input signal given by $V_{i n}=A \cos \omega t$. Determine the output signal amplitude if $A_{0}=\infty$.

Figure 1: Figure of Q2

Q3 (20\%) Try to use discrete incremental PID formulations to calculate $\Delta u(t)$. Some notations and values of parameters are given:

- $u(t)$ is the output of a controller in the t th measurement interval.
- $e(t)$ is the error between the target value and measurement value in the t th measurement interval. The error is measured every T time interval $(T=0.001)$.
And $e(t)=2, e(t-2)=5$ and $e(t-1)=3$.
- The numerical values of PID parameters, K_{p}, K_{i} and K_{d}, are 1, 50, 0.001 respectively.
(Hint: The formulation of continuous PID is $\left.u(t)=K_{p} e(t)+K_{i} \int_{0}^{t} e(t) \mathrm{d} t+K_{d} \frac{\mathrm{~d} e(t)}{\mathrm{d} t}\right)$
Q4 (20\%) The general equation of a liner estimate system is like $\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+\mathbf{w}_{t+1}$. Given a second-autoregression random series:

$$
\begin{equation*}
x(t)=2.32 x(t-1)-0.76 x(t-2)+\omega_{t} \tag{1}
\end{equation*}
$$

Kalman Filter is used to estimate $x(t)$ (Here $x(t)$ is a scalar). Try to give the formulations of state transition matrix A and noise vector \mathbf{w}_{t}.

A1 1. amplifier
2. $=$, infinite
3. 60
4. low
5. positive
6. 7
7. sample-and-hold circuit
8. Gyroscope
9. photodiode
10. slower, faster, decreasing

A2 It is easy to know,

$$
\begin{equation*}
V_{\text {out }}=-\frac{1}{R_{1} C_{1}} \int V_{\text {in }} d t \tag{2}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
V_{\text {out }}=-\frac{A}{R_{1} C_{1} \omega} \sin \omega t \tag{3}
\end{equation*}
$$

Output signal amplitude is $\frac{A}{R_{1} C_{1} \omega}$
A3

$$
\begin{gather*}
u(t)=K_{p} * e(t)+K_{i} * \sum e(t) * T+K_{d} * \frac{e(t)-e(t-1)}{T} \tag{4}\\
u(t-1)=K_{p} * e(t-1)+K_{i} * \sum e(t-1) * T+K_{d} * \frac{e(t-1)-e(t-2)}{T} \tag{5}\\
\Delta u(t)=K_{p} *(e(t)-e(t-1))+K_{i} * e(t) * T+K_{d} * \frac{e(t)-2 e(t-1)+e(t-2)}{T} \tag{6}
\end{gather*}
$$

So $\Delta u(t)=0.1$

A4 The random series is extended as:

$$
\left\{\begin{array}{rrrrrr}
x(t-1) & = & 0 \cdot x(t-2) & + & 1 \cdot x(x-1) & + \tag{7}\\
x(t) & = & -0.76 \cdot x(t-2) & + & 2.32 \cdot x(t-1) & + \\
& \omega_{t}
\end{array}\right.
$$

Its matrix form is

$$
\begin{align*}
& \left.\qquad \begin{array}{l}
x(t-1) \\
x(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-0.76 & 2.32
\end{array}\right] \cdot\left[\begin{array}{l}
x(t-2) \\
x(t-1)
\end{array}\right]+\left[\begin{array}{l}
0 \\
\omega_{t}
\end{array}\right] \tag{8}\\
& \text { Let } \boldsymbol{\chi}(t)=\left[\begin{array}{l}
x(t-1) \\
x(t)
\end{array}\right], \boldsymbol{\chi}(t-1)=\left[\begin{array}{l}
x(t-2) \\
x(t-1)
\end{array}\right], \mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-0.76 & 2.32
\end{array}\right] \text { and } \mathbf{w}_{t}=\left[\begin{array}{c}
0 \\
\omega_{t}
\end{array}\right], \text { Equa- } \\
& \text { tion (8) is equivalent to } \boldsymbol{\chi}(t)=\mathbf{A} \cdot \boldsymbol{\chi}(t-1)+\mathbf{w}_{t} .
\end{align*}
$$

