CENG4480 Homework 1

Due: Oct. 25, 2017

- Small-Signal Gain: For given amp circuits, small changes of input ΔV_{in} will cause output change of ΔV_{out} . Small-signal gain is defined by $\frac{\Delta V_{out}}{\Delta V_{in}}$.
- **Q1** (10%) Show that the circuit of Fig. 1 is a non-inverting summer. Assume the op-amp is ideal.

Figure 1: Non-inverting Summer

- **Q2** (10%) In the circuit of Fig. 2, $R_1 = R_2 = R' = R_f = R = 100$ k Ω and $C = 1\mu$ F. Assume the op-amps are ideal.
 - a. The relationship between U_i and U_o (U_{o1} is unknown).

b. Assume that when the time t = 0, $U_o = 0V$ and U_i jumps from 0V to -1V. How long will the U_o take to change from 0V to 6V?

Figure 2: Voltage Follower

- **Q3** (10%) Try to analyze the relationship between U_i and U_o in the circuit of Fig. 3. $R_1 = R_2 = R_3 = R_5 = 50 \text{k}\Omega, R_4 = 25 \text{k}\Omega$ and $C = 10 \mu \text{F}$. Assume the op-amps are ideal.
- **Q4** (15%) In the circuit of Fig. 4, assume that $U_{i1} = 4U_{i2} = 4V$, $R_1 = 50$ k Ω and $C = 1\mu$ F. The op-amps are ideal.

Figure 3

Figure 4

a. Calculate U_A , U_B , U_C , U_D and U_o , when the switch S is closed.

b. Assume that when the time t = 0, switch S is open. How long will the U_o take to become 0V?

 $\mathbf{Q5}$ (10%) Let us consider the Schmitt Trigger shown in Fig. 5

Figure 5: Schmitt Trigger

- 1. (5%) Due to the manufacturing defects, a parasitic resister R_3 occurs between the output node and ground, calculate the reference voltages.
- 2. (5%) If the parasitic device is a capacitor C, sketch v_{out} versus v_{in} . Label the key coordinates on the curve.

- **Q6** (10%) Prove that current is split into two equal parts for R 2R DAC.
- **Q7** (10%) Compute and sketch the output voltage of the op. amp in Fig. 6. Given $R_S = 1k\Omega$, $R_F = 10k\Omega$, $R_L = 1k\Omega$, $V_S^+ = 15V$, $V_S^- = -15V$, $v_s(t) = 2\sin(1000t)$. Repeat the problem if $V_S^+ = 20V$ and $V_S^- = -20V$.

Figure 6: Inverting Amplifier

- **Q8** (10%) What is the minimum number of bits required to digitize an analog signal with a resolution of 1%, 10%, 20%, respectively. (**Resolution**: Ratio between minimum voltage that can be sensed and the input voltage range.)
- **Q9** (15%) Mental-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) is the core component of a variety of amplifiers. Fig. 7 shows a common source amplifier circuit with N-type MOS (M1). Typically, when M1 works as amplifier, drain current I_D has the following relationship with bias voltage V_{in} :

$$I_D = k(V_{in} - V_{th})^2,$$
 (1)

where k is positive and related to material properties of MOSFET and V_{th} is threshold voltage to turn the device on. Calculate small-signal gain of common source amplifier and show that this amplifier is an inverting amplifier.

Figure 7: Common Source Amplifier