CENG4480 Homework 1

Due: Oct. 25, 2017

- Small-Signal Gain: For given amp circuits, small changes of input $\Delta V_{i n}$ will cause output change of $\Delta V_{\text {out }}$. Small-signal gain is defined by $\frac{\Delta V_{\text {out }}}{\Delta V_{\text {in }}}$.

Q1 (10\%) Show that the circuit of Fig. 1 is a non-inverting summer. Assume the op-amp is ideal.

Figure 1: Non-inverting Summer

Q2 (10\%) In the circuit of Fig. $2, R_{1}=R_{2}=R^{\prime}=R_{f}=R=100 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$. Assume the op-amps are ideal.
a. The relationship between U_{i} and U_{o} ($U_{o 1}$ is unknown).
b. Assume that when the time $t=0, U_{o}=0 V$ and U_{i} jumps from $0 V$ to $-1 V$. How long will the U_{o} take to change from 0 V to 6 V ?

Figure 2: Voltage Follower

Q3 (10\%) Try to analyze the relationship between U_{i} and U_{o} in the circuit of Fig. 3. $R_{1}=$ $R_{2}=R_{3}=R_{5}=50 \mathrm{k} \Omega, R_{4}=25 \mathrm{k} \Omega$ and $C=10 \mu \mathrm{~F}$. Assume the op-amps are ideal.

Q4 (15\%) In the circuit of Fig. 4, assume that $U_{i 1}=4 U_{i 2}=4 V, R_{1}=50 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$. The op-amps are ideal.

Figure 3

Figure 4
a. Calculate $U_{A}, U_{B}, U_{C}, U_{D}$ and U_{o}, when the switch S is closed.
b. Assume that when the time $t=0$, switch S is open. How long will the U_{o} take to become $0 V$?

Q5 (10\%) Let us consider the Schmitt Trigger shown in Fig. 5

Figure 5: Schmitt Trigger

1. (5%) Due to the manufacturing defects, a parasitic resister R_{3} occurs between the output node and ground, calculate the reference voltages.
2. (5%) If the parasitic device is a capacitor C, sketch $v_{\text {out }}$ versus $v_{i n}$. Label the key coordinates on the curve.

Q6 (10\%) Prove that current is split into two equal parts for $R-2 R$ DAC.

Q7 (10\%) Compute and sketch the output voltage of the op. amp in Fig. 6. Given $R_{S}=1 \mathrm{k} \Omega$, $R_{F}=10 \mathrm{k} \Omega, R_{L}=1 \mathrm{k} \Omega, V_{S}^{+}=15 \mathrm{~V}, V_{S}^{-}=-15 \mathrm{~V}, v_{s}(t)=2 \sin (1000 t)$. Repeat the problem if $V_{S}^{+}=20 \mathrm{~V}$ and $V_{S}^{-}=-20 \mathrm{~V}$.

Figure 6: Inverting Amplifier

Q8 (10\%) What is the minimum number of bits required to digitize an analog signal with a resolution of $1 \%, 10 \%, 20 \%$, respectively. (Resolution: Ratio between minimum voltage that can be sensed and the input voltage range.)

Q9 (15\%) Mental-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) is the core component of a variety of amplifiers. Fig. 7 shows a common source amplifier circuit with N -type MOS (M1). Typically, when M1 works as amplifier, drain current I_{D} has the following relationship with bias voltage $V_{i n}$:

$$
\begin{equation*}
I_{D}=k\left(V_{i n}-V_{t h}\right)^{2}, \tag{1}
\end{equation*}
$$

where k is positive and related to material properties of MOSFET and $V_{t h}$ is threshold voltage to turn the device on. Calculate small-signal gain of common source amplifier and show that this amplifier is an inverting amplifier.

Figure 7: Common Source Amplifier

