
CENG3420

Lab 1-2: RISC-V Assembly Language Programing II

Mingjun Li, Fangzhou Liu
Department of Computer Science & Engineering
Chinese University of Hong Kong
{mjli23, fzliu23}@cse.cuhk.edu.hk

Spring 2025

1 Recap

2 Function Call Procedure

3 Array Partitioning

4 Lab 1-2 Assignment

Outline

2/31

Recap

• The RISC-V Instruction Set Manual Volume I: Unprivileged ISA
https://riscv.org/technical/specifications/

• (For your reference): Supported instructions for RV32I https:
//github.com/TheThirdOne/rars/wiki/Supported-Instructions

In all labs. of CENG3420, we focus on RV32I instructions.

Recap
Important Materials

4/31

https://riscv.org/technical/specifications/
https://github.com/TheThirdOne/rars/wiki/Supported-Instructions
https://github.com/TheThirdOne/rars/wiki/Supported-Instructions

Categories
• Functional:

• Integer Computational Instructions
• Control Transfer Instructions
• Load & Store Instructions
• Environmental Call & Breakpoints
• Memory Ordering Instructions
• HINT Instructions

• Encoding:

Recap
RV32I Assembly Language Programing

5/31

Integer Register-Immediate Instructions

• (I-type) addi, slti, sltiu, andi, ori, xori

• (I-type) slli, srli, srai

• (U-type) lui, auipc

Integer Register-Register Operations

• (R-type) add, slt, sltu, and, or, xor sll, srl, sub, sra

Recap
Integer Computational Instructions

6/31

Unconditional Jumps

• (J-type) jal

• (I-type) jalr

Conditional Branches

• (B-type) beq, bne, blt, bltu, bge, bgeu

Recap
Control Transfer Instructions

7/31

Load & Store Instructions

• (I-type) lb, lbu, lh, lhu, lw

• (S-type) sb, sh, sw

Recap
Load & Store Instructions

8/31

Object File Section

• .text, .data, .rodata

Definition & Exporting of Symbols

• .globl, .local, .equ

Recap
RISC-V Assembler Directives

9/31

Object File Section

• .align, .balign, .p2align

Emitting Data

• .byte, .2byte, .4byte, .8byte, .half, .word, .dword, .asciz, .string,
.zero

Recap
Alignment Control

10/31

Declaration
.data
a: .word 1 2 3 4 5

Remark

• “a” denotes the address of the first element of the array.

• We can access through rest of the elements with .word offset (i.e., 4 bytes).
(What should be the offset for the 2nd element in the array above?)

Examples
Dealing with an Array

11/31

Example 1: Register Initialization and Loading Immediate Values

_start:
andi t0, t0, 0 # Make it zero
andi t1, t1, 0
andi t2, t2, 0
li t0, 0xFF # Load a 8-bit number
li t1, 0xFFFF # Load a 32-bit number
li t2, 0xFFFFFFFF # Load a 64-bit number

Examples I

12/31

Example 2: Arithmetic Operations

_start:
andi t0, t0, 0
andi t1, t1, 0
andi t2, t2, 0
li t0, 0x1A352A9C # t0 = 0x1A352A9C
li t1, 0x1B2D4C6A # t1 = 0x1B2D4C6A
add t2, t0, t1 # t2 = t1 + t0

Examples II

13/31

Example 3: Conditional Branching

_start:
andi t0, t0, 0
andi t1, t1, 0
andi t2, t2, 0
andi t3, t3, 0
andi t4, t4, 0
andi t5, t5, 0
li t0, 2 # t0 = 2
li t3, -2 # t3 = -2
slt t1, t0, zero # t1 = 1 if t0 < 0
beq t1, zero, else_if # Branch if t1 equals zero
j end_if # Unconditional jump to end_if

else_if:
sgt t4, t3, zero # t4 = 1 if t3 > 0
beq t4, zero, else # Branch if t4 equals zero
j end_if # Unconditional jump to end_if

else:
seqz t5, t4, zero # t5 = 1 if t4 = 0

end_if:
j program_end

Examples III

14/31

Function Call Procedure

Code Example

int sum(int a, int b)
{

return a + b;
}
int main()
{

int c;
c = sum(3, 5);
return c;

}

Code Example

sum:
addi sp,sp,-32
sw s0,28(sp)
addi s0,sp,32
... ...
add a5,a4,a5
mv a0,a5
lw s0,28(sp)
addi sp,sp,32
jr ra

main:
... ...
addi s0,sp,32
li a1,5
li a0,3
jal ra, sum # or call sum
... ...

Example I

16/31

Code Example

main:
addi sp,sp,-32 # allocate space for local variables
sw ra,28(sp) # save the return address of the caller
li a1,5 # second argument of sum(3, 5)
li a0,3 # first argument of sum(3, 5)
jal ra, sum # call sum(3, 5)
sw a0,12(sp) # save a0 (the returned value) to 12(sp)
lw a5,12(sp) # load the value in 12(sp)
addi a0,a5,0 # the value to return is put in a0
lw ra,28(sp) # restore the return address of the caller
addi sp,sp,32 # restore the stack pointer
jr ra # return

• You can try to simplify the code

Example I

17/31

JAL

• The JAL instruction (unconditional jump instruction) is used to implement a
software calling.

• The address of the instruction following JAL (pc+4) is saved into register rd.

• The target address is given as a PC-relative offset (the offset is sign-extended,
multiplied by 2, and added to the value of the PC).

Function Call Procedure

18/31

Syntax

jal rd, offset
jal rd, label

Usage

loop: addi x5, x4, 1 # assign x4 + 1 to x5
jal x1, loop # assign ‘PC + 4‘ to x1 and jump to loop

Function Call Procedure – JAL

19/31

JALR

• The JALR instruction (indirect jump instruction) is used to implement a subroutine
call.

• The address of the instruction following JAL (pc+4) is saved into register rd.

• The target address is given as a PC-relative offset (the offset is sign-extended and
added to the value of the destination register).

Function Call Procedure

20/31

Syntax

jalr rd, offset(rs1)

Usage

addi x1, x0, 3 # assign x0 + 3 to x1
loop: addi x5, x0, 1 # assign x0 + 1 to x5

jalr x0, 64(x1) # assign ‘PC + 4‘ to x0 and jump to the address ‘x1 + 64‘

Function Call Procedure – JALR

21/31

J
A pseudo instruction for JAL

Syntax

j label

Usage

loop: addi x5, x4, 1 # assign x4 + 1 to x5
j loop # assign ‘PC + 4‘ to x0 and jump to loop

(discard the return address)

JR
A pseudo instruction for JALR

Syntax

jr rs1

Usage

label: li x28, 100 # assign 100 to x28
li x5, 200 # assign 200 to x5
li x6, 50 # assign 50 to x6
jal ra, loop # jump to loop
li x2, 10 # assign 10 to x2

loop: add x4, x28, x5 # assign x28 + x5 to x4
sub x7, x6, x4 # assign x6 + x4 to x7
jr ra # jump to ‘ra + 0‘

Conditional Branches
Take beq as an example. If the values stored in rs1 and rs2 are equal, jump to label.

Syntax

beq rs1, rs2, label

Usage

beq x1, x0, loop # jump to loop when x1 equals to 0

Remark
Other conditional branches instructions: bne, blt, bltu, bge, bgeu...

More Examples of Function Call Procedure

22/31

Array Partitioning

• Pick an element, called a pivot, from the array.

• Reorder the array so that all elements with values less than the pivot come before the
pivot, while all elements with values greater than the pivot come after it (equal
values can go either way).

1: function PARTITION(A, lo, hi)
2: pivot← A[hi]
3: i← lo-1;
4: for j = lo; j ≤ hi-1; j← j+1 do
5: if A[j] ≤ pivot then
6: i← i+1;
7: swap A[i] with A[j];
8: end if
9: end for

10: swap A[i+1] with A[hi];
11: return i+1;
12: end function

Partitioning

24/31

1
1In this example, p = lo and r = hi.

Example of Partition

25/31

Lab 1-2 Assignment

An array array1 contains the sequence -3 22 32 9 5 2 11 2 1 69, each
element of which is .word. Rearrange the element order in this array such that,

1 All the elements smaller than the 4rd element (i.e. 9) are on the left of it,

2 All the elements bigger than the 4rd element (i.e. 9) are on the right of it.

And print the result (i.e. the partitioned sequence) to the terminal using syscall.

Submission Method:
Submit the source code and report after the whole lectures of Lab1 into Blackboard.

Lab Assignment

27/31

Declarations

• The given sequence array1 is fixed. You do not need to write input syscall to get it
from terminal.

• The pivot is fixed at the 4rd element (i.e. 9). You also do not need to write input
syscall to get it from terminal. (We will check whether the whole algorithm is
implemented appropriately, your code should work with other pivots.)

• For the result (i.e. the partitioned sequence), please print it to the RARS terminal
using syscall, as an example shown in the following figure:

Lab Assignment

28/31

Swap v[k] and v[k+1]

Assume a0 stores the address of the first element and a1 stores k.

swap: sll t1, a1, 2 # get the offset of v[k] relative
to v[0]

add t1, a0, t1 # get the address of v[k]
lw t0, 0(t1) # load the v[k] to t0
lw t2, 4(t1) # load the v[k + 1] to t2
sw t2, 0(t1) # store t2 to the v[k]
sw t0, 4(t1) # store t0 to the v[k + 1]

Appendix-A Simple Sort Example

29/31

C style sort:

void sort(int v[], int n)
{

int i, j;
for(i = 0; i < n; i += 1)
{

for(j = i - 1; j >= 0 && v[j] > v[j + 1]; j -= 1)
{

swap(j + 1, j);
}

}
}

Appendix-B Simple Sort Example

30/31

Exit and restoring registers

exit1:
lw ra, 16(sp)
lw s3, 12(sp)
lw s2, 8(sp)
lw s1, 4(sp)
lw s0, 0(sp)
addi sp, sp, 20

Appendix-C Save and Exit

31/31

	Recap
	Function Call Procedure
	Array Partitioning
	Lab 1-2 Assignment

