
CENG3420

Lab 1-1: RISC-V Assembly Language Programing I

Mingjun LI, Fangzhou LIU
Department of Computer Science & Engineering
Chinese University of Hong Kong
{mjli23, fzliu23}@cse.cuhk.edu.hk

Spring 2025

1 Introduction to Basic RISC-V Assembly Programing

2 System Call in RARS

3 Lab 1-1

Outline

2/27

Introduction to Basic RISC-V
Assembly Programing

• Computer, oversimplified. • Computing, oversimplified.

Computer and Computing

4/27

Definition
Assembly language is a low-level programming language that provides a symbolic
representation of machine code instructions. It’s specific to a particular computer
architecture (like RISC-V).

• Direct hardware control

• One-to-one correspondence with machine code

• Architecture-specific syntax

What is Assembly Language?

5/27

Definition
An assembler is a program that translates assembly language into machine code. It’s the
tool that converts human-readable assembly instructions into binary code that the
computer can execute.

Example

Assembly: add x1, x2, x3
↓ (Assembler)
Machine Code: 00000000001100010000000010110011

What is an Assembler?

6/27

Definition
A RISC-V simulator is a software tool that emulates RISC-V processor behavior, allowing
programmers to run and test RISC-V assembly programs without physical hardware.

• Executes RISC-V instructions virtually

• Provides detailed execution feedback

• Useful for education and debugging

RARS
RARS is an educational simulator based on MARS (MIPS Assembler and Runtime
Simulator), specifically adapted for RISC-V architecture.

• Integrated development environment (IDE)

• Built-in text editor

• Assembler and simulator combined

• Java-based (platform independent)

What is a RISC-V Simulator?

7/27

Important Material

The RISC-V Instruction Set Manual Volume I: Unprivileged ISA
https://riscv.org/technical/specifications/

In all labs of CENG3420, we focus on RV32I instructions.

RISC-V Instruction Set

8/27

https://riscv.org/technical/specifications/

• How to compute "C = A + B"

resC = varA + varB => resC = 8 after execution

.globl _start

.data # global variable declarations follow this line
varA: .word 3 # 1 word = 32 bits
varB: .word 5
resC: .word 0

.text # instructions follow this line
_start: # a label, marks a position in the code

la a1, varA # Load varA’s address to register a1
la a2, varB # Load varB’s address to register a2
la a3, resC # Load resC’s address to register a3
lw t1, 0(a1) # Load varA’s value to register t1
lw t2, 0(a2) # Load varB’s value to register t2
add t3, t1, t2 # Register t3 = t1 + t2
sw t3, 0(a3) # Save register t3 to resC

An Example Assembly Language Program

9/27

• Plain text file with data declarations, program code (usually suffixed with .asm)

• Data declaration section is followed by program code section

Data Declarations

• Identified with assembler directive .data

• Declares variable names used in program

• Storage allocated in main memory (e.g., RAM)

• <name>: .<datatype> <value>

• .byte (1 byte/8 bits), .2byte, .half, .short (2 bytes)
• .4byte, .word, .long (4 bytes), .8byte, .dword, .quad (8 bytes)
• .float, .double,

Program Structure I

10/27

Code

• placed in section of text identified with assembler directive .text

• contains program code (instructions)

• starting point for code e.g. execution given label start:

Comments
Anything following # on a line

Program Structure II

11/27

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.asm
Bare-bones outline of RISC-V assembly language program

.globl _start

.data # variable declarations follow this line
...

.text # instructions follow this line

_start: # indicates start of code
...

End of program, leave a blank line afterwards is preferred

Program Structure III

12/27

Data types:
• All instructions are encoding in 32 bits

• Alias: byte (8 bits), halfword (2 bytes), word (4 bytes), double word (8 bytes)

Literals:
• numbers entered as is. e.g., 12 in decimal, and 0xC in hexadecimal

• characters enclosed in single quotes. e.g., ‘b’

• strings enclosed in double quotes. e.g., “A string”

Data Types and Literals

13/27

• We can manipulate 32 architectural registers in assembly programming directly.

• We prefer using aliases to indicate registers.

• Instructions category

• Load and store instructions
• Bitwise instructions
• Arithmetic instructions
• Control transfer instructions
• Pseudo instructions

Registers

14/27

Table: Register names and descriptions

Register Names ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register

x6-7 t1 - t2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 s1 Saved register

x10-11 a0-a1 Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

Register Names and Descriptions

15/27

For more information about RISC-V instructions and assembly programing you
can refer to:

1 Lecture slides and textbook.

2 RARS Help: F1

3 https:
//github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

4 https:
//web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

More Information

16/27

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

System Call in RARS

RARS provides a small set of operating system-like services through the system
call (ecall) instruction. Register contents are not affected by a system call, except
for result registers in some instructions.

• Load the service number (or number) in register a7.

• Load argument values, if any, in a0, a1, a2 ..., as specified.

• Issue ecall instruction.

• Retrieve return values, if any, from result registers as specified.

System Calls in RARS I

18/27

System Calls in RARS II

19/27

An example shows how to use system calls in RARS

Using system call

Comment giving name of program and description
sys-call.asm
Bare-bones outline of RISC-V assembly language program

.globl _start

.data
msg: .asciz "Hello, world!\n"

.text
_start:
li a7, 4 # system call code for PrintString
la a0, msg # address of string to print
ecall # Use the system call
End of program, leave a blank line afterwards is preferred

You can check the output in Run/IO of the program information panel.

An Example of System Calls in RARS I

20/27

• li loads a register with an immediate value given in the instruction.

• la loads an address of the specified symbol.

• .asciz emits the specified string within double quotes and includes the terminated
zero character at the end.

An Example of System Calls in RARS II

21/27

Lab 1-1

We have 3 sub-labs for lab1.
• Lab1: RISC-V assembly language programming using RARS simulator.

• In lab1, we will practice coding in RISC-V assembly language, and understand how
our codes run in a RISC-V CPU.

• Lab1-1: basic operators and system call.
• Lab1-2: function call and simple algorithm implementation.
• Lab1-3: stack data structure, recursive function call, more complex algorithm

implementation.

Lab1 Overview

23/27

Write a RISC-V assembly program lab1-1.asm step by step:

1 Define three variables var1, var2 and var3 which will be loaded from terminal
using syscall.

2 Increase var1 by 5, multiply var2 by 4.

3 increase var3 by var1 + var2.

4 print var1, var2 and var3 to terminal using syscall.

Example:

Input:
1
2
3
Output:
6
8
17

Lab1-1 Requirement

24/27

1 Variables should be declared following the .data identifier.

2 <name>: .<datatype> <value>

3 Use la instruction to access the RAM address of declared data.

4 Use system call to read and print from the terminal.

5 Do not forget \n.

6 Do not forget exit system call.

7 You do not need to print "Input:" or "Output:" in the example in the previous page.

Some Tips

25/27

Submission Method:

• Submit the source codes and report after finishing all the sub-labs of Lab1.

• The submission window of Lab1 will be opened on Blackboard.

• The report template can be found on the homepage of CENG3420:
https://www.cse.cuhk.edu.hk/~byu/CENG3420/2025Spring/doc/
lab1-report-template.pdf

Submission

26/27

https://www.cse.cuhk.edu.hk/~byu/CENG3420/2025Spring/doc/lab1-report-template.pdf
https://www.cse.cuhk.edu.hk/~byu/CENG3420/2025Spring/doc/lab1-report-template.pdf

THANK YOU!

	Introduction to Basic RISC-V Assembly Programing
	System Call in RARS
	Lab 1-1

