
CENG 3420
Computer Organization & Design

Lecture 14: Cache Discussions

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 5.3–5.4)

2025 Spring

1 Example 1

2 Example 2

3 Example 3

4 Performance Issues

2/28

Overview

2/28

Example 1

3/28

short A[10][4];
int sum = 0;
int j, i;
double mean;

// forward loop
for (j = 0; j <= 9; j++)

sum += A[j][0];

mean = sum / 10.0;

// backward loop
for (i = 9; i >= 0; i--)

A[i][0] = A[i][0]/mean;

• Assume separate instruction and data caches

• So we consider only the data

• Cache has space for 8 blocks

• A block contains one word (byte)

• A[10][4] is an array of words located at
7A00-7A27 in row-major order

4/284/28

Cache Example

4/28

A[0][0]
A[0][1]

A[0][2]
A[0][3]
A[1][0]

A[9][0]
A[9][1]
A[9][2]
A[9][3]

Array Contents (40 elements)

Tag for Direct Mapped

Tag for Set-Associative

Tag for Associative

0 1 1 1 1 10 0 0 0 0 0 0 0 0 0
1 1 1 10 10 0 0 0 0 0 0 0 0 1

0 1 1 1 1 10 0 0 0 0 0 0 0 01
0 1 1 1 1 10 0 0 0 0 0 0 0 1 1

0 1 1 1 1 10 0 0 0 0 0 0 1 0 0

0 1 1 1 1 10 0 0 0 1 0 0 1 0 0
1 1 1 10 10 0 0 0 1 0 0 1 0 1

0 1 1 1 1 10 0 0 0 1 0 0 1 01

0 1 1 1 1 10 0 0 0 1 0 0 1 1 1

Memory word address in binary

(7A00)
(7A01)
(7A02)

(7A03)
(7A04)

(7A24)
(7A25)

(7A26)
(7A27)

Memory word
address in hex

8 blocks in cache, 3 bits encodes cache block number

4 blocks/ set, 2 cache sets, 1 bit encodes cache set number

To simplify discussion: 16-bit word (byte) address; i.e. 1 word = 1 byte.

5/28

Cache Example

5/28

• Least significant 3-bits of address determine location
• No replacement algorithm is needed in Direct Mapping
• When i == 9 and i == 8, get a cache hit (2 hits in total)
• Only 2 out of the 8 cache positions used
• Very inefficient cache utilization

Content of data cache after loop pass: (time line)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block
number

0 A[0][0] A[0][0] A[2][0] A[2][0] A[4][0] A[4][0] A[6][0] A[6][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[6][0] A[6][0] A[4][0] A[4][0] A[2][0] A[2][0] A[0][0]

1

2

3

4 A[1][0] A[1][0] A[3][0] A[3][0] A[5][0] A[5][0] A[7][0] A[7][0] A[9][0] A[9][0] A[9][0] A[7][0] A[7][0] A[5][0] A[5][0] A[3][0] A[3][0] A[1][0] A[1][0]

5

6

7

Tags not shown but are needed.

6/28

Direct Mapping

6/28

• LRU replacement policy: get cache hits for i = 9, 8, . . . , 2

• If i loop was a forward one, we would get no hits!

Content of data cache after loop pass: (time line)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block
number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0]

4 A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0]

5 A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0]

6 A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0]

7 A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0]

Tags not shown but are needed; LRU Counters not shown but are needed.

7/28

Associative Mapping

7/28

• Since all accessed blocks have even addresses (7A00, 7A04, 7A08, ...), only
half of the cache is used, i.e. they all map to set 0

• LRU replacement policy: get hits for i = 9, 8, 7 and 6
• Random replacement would have better average performance
• If i loop was a forward one, we would get no hits!

Content of data cache after loop pass: (time line)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block
number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[4][0] A[4][0] A[4][0] A[4][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[4][0] A[4][0] A[4][0] A[4][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[5][0] A[5][0] A[5][0] A[5][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[5][0] A[5][0] A[5][0] A[5][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[3][0] A[3][0] A[3][0] A[3][0]

4

5

6

7

Set 0

Set 1

Tags not shown but are needed; LRU Counters not shown but are needed.
8/28

Set Associative Mapping

8/28

• In this example, Associative is best, then Set-Associative, lastly Direct Mapping.

• What are the advantages and disadvantages of each scheme?

• In practice,

• Low hit rates like in the example is very rare.
• Usually Set-Associative with LRU replacement scheme is used.

• Larger blocks and more blocks greatly improve cache hit rate, i.e. more cache
memory

9/28

Comments on the Example

9/28

Example 2

10/28

Question:
How many total bits are required for a direct-mapped cache with 16 KiB of data and
4-word blocks, assuming a 32-bit address?

Answer:
• In a 32-bit address CPU, 16 KiB is 4096 words.

• With a block size of 4 words, there are 1024 blocks.

• Each block has 4 × 32 or 128 bits of data plus a tag, which is (32 − 10 − 2 − 2) = 18
bits, plus a valid bit.

• Thus, the total cache size is 210 × (4 × 32 + 18 + 1) = 210 × 147 bits.

• the total number of bits in the cache is about 1.15 =
147

32 × 4
times as many as needed

just for the storage of the data.

11/2811/28

Question:
How many total bits are required for a direct-mapped cache with 16 KiB of data and
4-word blocks, assuming a 32-bit address?

Answer:
• In a 32-bit address CPU, 16 KiB is 4096 words.

• With a block size of 4 words, there are 1024 blocks.

• Each block has 4 × 32 or 128 bits of data plus a tag, which is (32 − 10 − 2 − 2) = 18
bits, plus a valid bit.

• Thus, the total cache size is 210 × (4 × 32 + 18 + 1) = 210 × 147 bits.

• the total number of bits in the cache is about 1.15 =
147

32 × 4
times as many as needed

just for the storage of the data.

11/28

Question:
How many total bits are required for an associated-mapped cache with 16 KiB of data and
4-word blocks, assuming a 32-bit address?

Answer:
• In a 32-bit address CPU, 16 KiB is 4096 words.

• With a block size of 4 words, there are 1024 blocks.

• Each block has 4 × 32 or 128 bits of data plus a tag, which is (32 − 2 − 2) = 28 bits,
plus a valid bit.

• Thus, the total cache size is 210 × (4 × 32 + 28 + 1) = 210 × 157 bits.

• the total number of bits in the cache is about 1.27 =
157

32 × 4
times as many as needed

just for the storage of the data.

12/2812/28

Question:
How many total bits are required for an associated-mapped cache with 16 KiB of data and
4-word blocks, assuming a 32-bit address?

Answer:
• In a 32-bit address CPU, 16 KiB is 4096 words.

• With a block size of 4 words, there are 1024 blocks.

• Each block has 4 × 32 or 128 bits of data plus a tag, which is (32 − 2 − 2) = 28 bits,
plus a valid bit.

• Thus, the total cache size is 210 × (4 × 32 + 28 + 1) = 210 × 157 bits.

• the total number of bits in the cache is about 1.27 =
157

32 × 4
times as many as needed

just for the storage of the data.

12/28

Example 3

13/28

Question
We have designed a 64-bit address direct-mapped cache, and the bits of address used to
access the cache are as shown below:

Table: Bits of the address to use in accessing the cache

Tag Index Offset
63-10 9-5 4-0

1 What is the block size of the cache in words?

2 Find the ratio between total bits required for such a cache design implementation
over the data storage bits.

3 Beginning from power on, the following byte-addressed cache references are
recorded as shown below.

Table: Recored byte-addressed cache references

Hex 00 04 10 84 E8 A0 400 1E 8C C1C B4 884
Dec 0 4 16 132 232 160 1024 30 140 3100 180 2180

Find the hit ratio. 14/2814/28

1 Each cache block consists of four 8-byte words. The total offset is 5 bits. Three of
those 5 bits is the word offset (the offset into an 8-byte word). The remaining two bits
are the block offset. Two bits allows us to enumerate 22 = 4 words.

2 The ratio is 1.21. The cache stores a total of
32lines × 4words/block × 8bytes/word = 1024bytes = 8192bits. In addition to the
data, each line contains 54 tag bits and 1 valid bit. Thus, the total bits required is
8192 + 54 × 32 + 1 × 32 = 9952 bits.

3 The hit ratio is 4
12 = 33%

15/2815/28

Performance Issues

16/28

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets Blocks per set
Direct mapped # of blocks 1
Set associative # of blocks

Associativity Associativity
Fully associative 1 # of blocks

Q2: How Is Entry Be Found?

Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags Degree of associativity

Fully associative Compare all tags # of blocks

17/2817/28

Q1: Where A Block Be Placed in Upper Level?

Scheme name # of sets Blocks per set
Direct mapped # of blocks 1
Set associative # of blocks

Associativity Associativity
Fully associative 1 # of blocks

Q2: How Is Entry Be Found?

Scheme name Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare set’s tags Degree of associativity

Fully associative Compare all tags # of blocks

17/28

Q3: Which Entry Should Be Replaced on a Miss?
• Direct mapped: only one choice

• Set associative or fully associative:

• Random
• LRU (Least Recently Used)

Note that:
• For a 2-way set associative, random replacement has a miss rate 1.1× than LRU

• For high level associativity (4-way), LRU is too costly

18/2818/28

Q4: What Happen On A Write?
• Write-Through:

• The information is written in both the block in cache & the block in lower level
of memory

• Combined with write buffer, so write waits can be eliminated
• ⊕

:
• ⊕

:

• Write-Back:

• The information is written only to the block in cache
• The modification is written to lower level, only when the block is replaced
• Need dirty bit: tracks whether the block is clean or not
• Virtual memory always use write-back
• ⊕

:
• ⊕

:

19/2819/28

Q4: What Happen On A Write?
• Write-Through:

• The information is written in both the block in cache & the block in lower level
of memory

• Combined with write buffer, so write waits can be eliminated
• ⊕

: read misses don’t result in writes (optional)
• ⊕

: easier to implement

• Write-Back:

• The information is written only to the block in cache
• The modification is written to lower level, only when the block is replaced
• Need dirty bit: tracks whether the block is clean or not
• Virtual memory always use write-back
• ⊕

:
• ⊕

:

19/28

Q4: What Happen On A Write?
• Write-Through:

• The information is written in both the block in cache & the block in lower level
of memory

• Combined with write buffer, so write waits can be eliminated
• ⊕

: read misses don’t result in writes (optional)
• ⊕

: easier to implement

• Write-Back:

• The information is written only to the block in cache
• The modification is written to lower level, only when the block is replaced
• Need dirty bit: tracks whether the block is clean or not
• Virtual memory always use write-back
• ⊕

: write with speed of cache
• ⊕

: repeated writes require only one write to lower level

19/28

Performance
How fast machine instructions can be brought into the processor and how fast they can be
executed.

• Two key factors are performance and cost, i.e., price/performance ratio.

• For a hierarchical memory system with cache, the processor is able to access
instructions and data more quickly when the data wanted are in the cache.

• Therefore, the impact of a cache on performance is dependent on the hit and miss
rates.

20/28

Performance Consideration

20/28

• High hit rates over 0.9 are essential for high-performance computers.

• A penalty is incurred because extra time is needed to bring a block of data from a
slower unit to a faster one in the hierarchy.

• During that time, the processor is stalled.

• The waiting time depends on the details of the cache operation.

Miss Penalty

Total access time seen by the processor when a miss occurs.

21/28

Cache Hit Rate and Miss Penalty

21/28

Example: Consider a computer with the following parameters:

Access times to the cache and the main memory are t and 10t respectively. When a cache
miss occurs, a block of 8 words will be transferred from the MM to the cache. It takes 10t
to transfer the first word of the block and the remaining 7 words are transferred at a rate
of one word per t seconds.

• Miss penalty = t + 10t + 7 × t + t

• First t: Initial cache access that results in a miss.

• Last t: Move data from the cache to the processor.

22/28

Miss Penalty

22/28

Average Memory Access Time

h × C + (1 − h)× M

• h: hit rate

• M: miss penalty

• C: cache access time

• High cache hit rates (> 90%) are essential

• Miss penalty must also be reduced

23/2823/28

Question: Memory Access Time Example

• Assume 8 cycles to read a single memory word;

• 15 cycles to load a 8-word block from main memory (previous example);

• cache access time = 1 cycle

• For every 100 instructions, statistically 30 instructions are data read/ write

• Instruction fetch: 100 memory access: assume hit rate = 0.95

• Data read/ write: 30 memory access: assume hit rate = 0.90

Calculate: (1) Execution cycles without cache; (2) Execution cycles with cache.

24/2824/28

• In high-performance processors, two levels of caches are normally used, L1 and L2.

• L1 must be very fast as they determine the memory access time seen by the processor.

• L2 cache can be slower, but it should be much larger than the L1 cache to ensure a
high hit rate. Its speed is less critical because it only affects the miss penalty of the L1
cache.

• Average access time on such a system:

h1 · C1 + (1 − h1) · [h2 · C2 + (1 − h2) · M]

• h1 (h2): the L1 (L2) hit rate

• C1 the access time of L1 cache,

• C2 the miss penalty to transfer data from L2 cache to L1

• M: the miss penalty to transfer data from MM to L2 and then to L1.

25/28

Caches on Processor Chips

25/28

• Take advantage of spatial locality.

• , If all items in a larger block are needed in a computation, it is better to load these
items into the cache in a single miss.

• / Larger blocks are effective only up to a certain size, beyond which too many items
will remain unused before the block is replaced.

• / Larger blocks take longer time to transfer and thus increase the miss penalty.

• Block sizes of 16 to 128 bytes are most popular.

26/28

Larger Block Size

26/28

Miss rate goes up if the block size becomes a significant fraction of the cache size
because the number of blocks that can be held in the same size cache is smaller
(increasing capacity misses)

27/28

Miss Rate v.s. Block Size v.s. Cache Size

27/28

Write buffer:
• Read request is served first.

• Write request stored in write buffer first and sent to memory whenever there is no
read request.

• The addresses of a read request should be compared with the addresses of the write
buffer.

Prefetch:
• Prefetch data into the cache before they are needed, while the processor is busy

executing instructions that do not result in a read miss.

• Prefetch instructions can be inserted by the programmer or the compiler.

Load-through Approach
• Instead of waiting the whole block to be transferred, the processor resumes execution

as soon as the required word is loaded in the cache.

28/28

Enhancement (optional)

28/28

	Main Talk
	Example 1
	Example 2
	Example 3
	Performance Issues

