
CENG 3420
Computer Organization & Design

Lecture 09: Pipeline – Basis

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 4.5 & 4.6)

2025 Spring

1 Motivations

2 Pipeline Basis

3 Structural Hazards

4 Background (Optional)

2/29

Overview

2/29

Motivations

3/29

• Single cycle: the whole datapath is finished in one clock cycle

• It is simple and easy to understand

• Uses the clock cycle inefficiently – the clock cycle must be timed to accommodate the
slowest instr

• Problematic for more complex instructions like floating point multiply

• May be wasteful of area since some functional units (e.g., adders) must be duplicated
since they can not be shared during a clock cycle

Clk

lw sw Waste

Cycle 1 Cycle 2

4/29

Single Cycle Disadvantages

4/29

• Though simple, the single cycle approach is not used because it is very slow

• Clock cycle must have the same length for every instruction

• What is the longest path (slowest instruction)? Load instruction!

• It is too long for the store instruction so the last part of the cycle here is wasted.

5/29

Single Cycle Disadvantages

5/29

EX: Instruction Critical Paths
Calculate cycle time assuming negligible delays (for muxes, control unit, sign extend, PC
access, shift left 2, wires) except:

• Instruction fetch and update PC (IF), Read/write data from/to data memory (MEM)
(4 ns)

• Execute R-type; calculate memory address (EXE) (2 ns)

• Register fetch and instruction decode (ID), Write the result data into the register file
(WB) (1 ns)

Instr. IF ID EXE MEM WB Total

R/I-type
lw
sw
beq

jal
jalr

6/296/29

EX: Instruction Critical Paths
Calculate cycle time assuming negligible delays (for muxes, control unit, sign extend, PC
access, shift left 2, wires) except:

• Instruction fetch and update PC (IF), Read/write data from/to data memory (MEM)
(4 ns)

• Execute R-type; calculate memory address (EXE) (2 ns)

• Register fetch and instruction decode (ID), Write the result data into the register file
(WB) (1 ns)

Instr. IF ID EXE MEM WB Total

R/I-type 4 1 2 1 8
lw 4 1 2 4 1 12
sw 4 1 2 4 11
beq 4 1 2 7

jal
jalr

6/29

CPU time = CPI × CC × IC

• Start fetching and executing the next instruction before the current one has
completed

• Pipelining – (all?) modern processors are pipelined for performance
• Under ideal conditions and with a large number of instructions, the speedup

from pipelining is approximately equal to the number of pipe stages
• A five stage pipeline is nearly five times faster because the CC is “nearly” five

times faster

• Fetch (and execute) more than one instruction at a time

• Superscalar processing – stay tuned

7/29

How Can We Make It Faster?

7/29

Pipeline Basis

8/29

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EXE MEM WBlw

• IF: Instruction Fetch and Update PC

• ID: Registers Fetch and Instruction Decode

• EXE: Execute R-type; calculate memory address

• MEM: Read/write the data from/to the Data Memory

• WB: Write the result data into the register file

9/29

The Five Stages of Load Instruction

9/29

Start the next instruction before the current one has completed
• improves throughput - total amount of work done in a given time

• instruction latency (execution time, delay time, response time - time from the start of
an instruction to its completion) is not reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EXE MEM WBlw

Cycle 7Cycle 6 Cycle 8

sw IF ID EXE MEM WB

R-type IF ID EXE MEM WB

1 clock cycle (pipeline stage time) is limited by the slowest stage

2 for some stages don’t need the whole clock cycle (e.g., WB)

3 for some instructions, some stages are wasted cycles (i.e., nothing is done during that
cycle for that instruction)

10/29

A Pipelined RISC-V Processor

10/29

lw IF ID EXE MEM WB
Pipeline Implementation (CC = 200 ps):

IF ID EXE MEM WBsw

IF ID EXE MEM WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

400 ps

• To complete an entire instruction in the pipelined case takes 1000 ps (as compared to
800 ps for the single cycle case). Why ?

• How long does each take to complete 1,000,000 adds ?

11/29

Single Cycle versus Pipeline

11/29

What makes it easy

• all instructions are the same length (32 bits)

• can fetch in the 1st stage and decode in the 2nd stage

• few instruction formats (three) with symmetry across formats

• can begin reading register file in 2nd stage

• memory operations occur only in loads and stores

• can use the execute stage to calculate memory addresses

• each instruction writes at most one result (i.e., changes the machine state) and does it
in the last few pipeline stages (MEM or WB)

• operands must be aligned in memory so a single data transfer takes only one data
memory access

12/29

Pipelining the RISC-V ISA

12/29

State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX EX/MEM

MEM/WB

System Clock

13/29

RISC-V Pipeline Datapath Additions/Mods

13/29

A
LUIM Reg DM Reg

Can help with answering questions like:
• How many cycles does it take to execute this code?

• What is the ALU doing during cycle 4?

• Is there a hazard, why does it occur, and how can it be fixed?

14/29

Graphically Representing RISC-V Pipeline

14/29

What about the (slow) multiply operation?
• Make the clock twice as slow or ...

• let it take two cycles (since it doesn’t use the MEM stage)

A
LUIM Reg DM Reg

MUL

What if the data memory access is twice as slow as the instruction memory?
• make the clock twice as slow or ...

• let data memory access take two cycles (and keep the same clock rate)

A
LUIM Reg DM1 RegDM2

15/29

Other Pipeline Structures Are Possible

15/29

• ARM7:

IM Reg MEM

PC update
IF access

decode
Reg access

ALU op MEM access shift/rotate
commit result (write back)

• XScale:

A
LUIM1 IM2 MEM1 Reg

MEM2Reg SHFT

PC update
BTB access

start IF access

IF access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start MEM access
exception

MEM write
reg write

16/29

Other Sample Pipeline Alternatives

16/29

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Once the
pipeline is full,
one instruction

is completed
every cycle, so

CPI = 1

Time to fill the pipeline

17/29

Why Pipeline? For Performance!

17/29

Structural Hazards

18/29

Yes! Pipeline Hazards

• structural hazards: a required resource is busy

• data hazards: attempt to use data before it is ready

• control hazards: deciding on control action depends on previous instruction

Can usually resolve hazards by waiting
• pipeline control must detect the hazard

• and take action to resolve hazards

19/29

Can Pipelining Get Us Into Trouble?

19/29

• Conflict for use of a resource

• In RISC-V pipeline with a single memory

• Load/store requires data access
• Instruction fetch requires instruction access

• Hence, pipeline datapaths require separate instruction/data memories

• Or separate instruction/data caches

• Since Register File

20/29

Structure Hazards

20/29

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Reading data from
memory

Reading instruction
from memory

q Fix with separate instr and data memories (I$ and D$)

Fix with separate instr and data memories (I$ and D$) 21/29

Resolve Structural Hazard 1

21/29

clock edge that controls
register writing

clock edge that controls loading
of pipeline state registers

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
LUIM Reg DM Reg

A
LUReg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

add $1,

add $2,$1,

IM

Fix register file access
hazard by doing

reads in the second
half of the cycle and

writes in the first half

22/29

Resolve Structural Hazard 2

22/29

Background (Optional)

23/29

• Clocking methodology defines when signals can be read and when they can be
written

• State element design choices
• level sensitive latch
• master-slave and edge-triggered flipflops

24/29

Clocking Methodologies

24/29

• Output is equal to the stored value inside the element

• Change of state (value) is based on the clock
• Latches: output changes whenever the inputs change and the clock is asserted

(level sensitive methodology)
• Two-sided timing constraint

• Flip-flop: output changes only on a clock edge (edge-triggered methodology)
• One-sided timing constraint

A clocking methodology defines when signals can be read and written – would
NOT want to read a signal at the same time it was being written

25/29

Review: Latches vs Flipflops

25/29

26/29

Review: Design A Latch

26/29

• Based on Gated Latch

• Master-slave positive-edge-triggered D flip-flop

27/29

Review: Design A Flip-Flop

27/29

• Latch is level-sensitive
• Flip-flop is edge triggered

28/29

Review: Latch and Flip-Flop

28/29

• An edge-triggered methodology
• Typical execution

• read contents of some state elements
• send values through some combinational logic
• write results to one or more state elements

• Assumes state elements are written on every clock cycle; if not, need explicit write
control signal

• write occurs only when both the write control is asserted and the clock edge
occurs 29/29

Our Implementation

29/29

	Main Talk
	Motivations
	Pipeline Basis
	Structural Hazards
	Background (Optional)

