CENG 3420 @

Computer Organization & Design

Lecture 09: Pipeline — Basis

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 4.5 & 4.6)

2025 Spring

Overview

@ Motivations

@ DPipeline Basis

® Structural Hazards

@ Background (Optional)

2/29

Motivations

Ra

Single Cycle Disadvantages

¢ Single cycle: the whole datapath is finished in one clock cycle
¢ Itis simple and easy to understand

¢ Uses the clock cycle inefficiently — the clock cycle must be timed to accommodate the
slowest instr

¢ Problematic for more complex instructions like floating point multiply

¢ May be wasteful of area since some functional units (e.g., adders) must be duplicated
since they can not be shared during a clock cycle

Cycle 1 Cycle 2

ewl — =

[Iw | swW { Waste|

4/29

Single Cycle Disadvantages

Though simple, the single cycle approach is not used because it is very slow

Clock cycle must have the same length for every instruction

What is the longest path (slowest instruction)? Load instruction!

It is too long for the store instruction so the last part of the cycle here is wasted.

5/29

EX: Instruction Critical Paths

Calculate cycle time assuming negligible delays (for muxes, control unit, sign extend, PC
access, shift left 2, wires) except:

Instruction fetch and update PC (IF), Read /write data from/to data memory (MEM)
(4 ns)

Execute R-type; calculate memory address (EXE) (2 ns)

Register fetch and instruction decode (ID), Write the result data into the register file
(WB) (1 ns)

Instr. IF ID EXE MEM WB Total

R/I-type
1w
SW

beq

jal
jalr

6/29

EX: Instruction Critical Paths

Calculate cycle time assuming negligible delays (for muxes, control unit, sign extend, PC
access, shift left 2, wires) except:

Instruction fetch and update PC (IF), Read /write data from/to data memory (MEM)
(4 ns)

Execute R-type; calculate memory address (EXE) (2 ns)

Register fetch and instruction decode (ID), Write the result data into the register file

(WB) (1 ns)
Instr. IF ID EXE MEM WB Total
R/I-type 4 1 2 1 8
1w 4 1 2 4 1 12
swW 4 1 2 4 11
beqg 4 1 2 7
jal
jalr

6/29

How Can We Make It Faster?

CPU time = CPI x CC x IC

¢ Start fetching and executing the next instruction before the current one has
completed

¢ Pipelining — (all?) modern processors are pipelined for performance

¢ Under ideal conditions and with a large number of instructions, the speedup
from pipelining is approximately equal to the number of pipe stages

® A five stage pipeline is nearly five times faster because the CC is “nearly” five
times faster

¢ Fetch (and execute) more than one instruction at a time

® Superscalar processing — stay tuned

7/29

Pipeline Basis

=
P

The Five Stages of Load Instruction

Cycle 1§Cycle 2 Cycle 3 Cycle 4 Cycle 5

[A B O

Iw [iIF [ip | exe | vem | wB |

IF: Instruction Fetch and Update PC

ID: Registers Fetch and Instruction Decode

EXE: Execute R-type; calculate memory address

MEM: Read/write the data from/to the Data Memory

WB: Write the result data into the register file

9/29

A Pipelined RISC-V Processor

Start the next instruction before the current one has completed
¢ improves throughput - total amount of work done in a given time

¢ instruction latency (execution time, delay time, response time - time from the start of
an instruction to its completion) is not reduced

éCycIe 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5§Cycle 6 éCycIe 7 éCycIe 8

[A S U U O O O

1w ['F | o | x| mEm] ws |
sw [k | b | exE | MEm | wB |
R-type [F I o [exE] vem] w |

@ clock cycle (pipeline stage time) is limited by the slowest stage
@ for some stages don’t need the whole clock cycle (e.g., WB)

® for some instructions, some stages are wasted cycles (i.e., nothing is done during that

cycle for that instruction) 10/29

Single Cycle versus Pipeline

Single Cycle Implementation (CC = 800 ps):
Cycle 1 ‘ Cycle 2
m H

L

| 1w | sw i Wastp

Pipeline Implementation (CC = 200 ps): ;&)
wl[IF [Jexe [mMem] ws | '

sw |[IF | ID IEXEIMEMIWBi

Rtype| IF | 1D | EXE [weEv T we |

¢ To complete an entire instruction in the pipelined case takes 1000 ps (as compared to
800 ps for the single cycle case). Why ?

¢ How long does each take to complete 1,000,000 adds ?

11/29

Pipelining the RISC-V ISA

What makes it easy

¢ all instructions are the same length (32 bits)
¢ can fetch in the 1st stage and decode in the 2nd stage

¢ few instruction formats (three) with symmetry across formats
¢ can begin reading register file in 2nd stage

° memory operations occur only in loads and stores
¢ can use the execute stage to calculate memory addresses

¢ each instruction writes at most one result (i.e., changes the machine state) and does it
in the last few pipeline stages (MEM or WB)

¢ operands must be aligned in memory so a single data transfer takes only one data
memory access

12/29

RISC-V Pipeline Datapath Additions/Mods

State registers between each pipeline stage to isolate them

IF:IFetch

ID:Dec

EX:Execute

MEM: WB:
MemAccess WriteBack

IF/ID

Instruction
Memory

Read
IAddress

ad Addr 1
Register Read| |
ad Addr Pata 1

File

Write Addr Read| |
Data 2

Write Data

System Clock

16 \Extend /255

Sign

e MEM/WB

Data
Memory

Read
—>Address Data

Write Data

13/29

Graphically Representing RISC-V Pipeline

M HReg DM Reg

b

Can help with answering questions like:
* How many cycles does it take to execute this code?
¢ What is the ALU doing during cycle 4?

¢ Is there a hazard, why does it occur, and how can it be fixed?

14/29

Other Pipeline Structures Are Possible

What about the (slow) multiply operation?
¢ Make the clock twice as slow or ...

¢ let it take two cycles (since it doesn’t use the MEM stage)

What if the data memory access is twice as slow as the instruction memory?
* make the clock twice as slow or ...

¢ let data memory access take two cycles (and keep the same clock rate)

M |Reg ? om1|— pm2 @

15/29

Other Sample Pipeline Alternatives

° ARMY:
IM Reg |MEM
PC update decode
IF access Reg access
ALU op MEM access shift/rotate
commit result (write back)
® XScale:

PC update decode MEM write
BTB access reg 1 access ALU op reg write
IF
start [F access shift/rotate start MEM access

IF access reg 2 access exception

16/29

Why Pipeline? For Performance!

Time (clock cycles)

Once the
/| InstO |IM | Reg]! ? -@M Reg pipéline is full,
n |‘ one instruction
s is completed
¢ | Inst 1 |IM Reg D™ .|.|Reg every cycle, so
r ' CPI =1
ol Inst 2 M : ? DM].lReg
: [s i
o nst3 [e 2
el Inst M Reg]; M].lReg
r TF_
Inst 4 m |fRes ? P
Timé to fillithe pipeline I‘

17/29

Structural Hazards

=
P

Can Pipelining Get Us Into Trouble?

Yes! Pipeline Hazards

¢ structural hazards: a required resource is busy
¢ data hazards: attempt to use data before it is ready

¢ control hazards: deciding on control action depends on previous instruction

Can usually resolve hazards by waiting
¢ pipeline control must detect the hazard

¢ and take action to resolve hazards

19/29

Structure Hazards

Conflict for use of a resource

In RISC-V pipeline with a single memory

¢ Load/store requires data access
¢ Instruction fetch requires instruction access

* Hence, pipeline datapaths require separate instruction/data memories
¢ Or separate instruction/data caches

¢ Since Register File

20/29

Resolve Structural Hazard 1

Time (clock cycles)

1 4 : Reading data from
B M | Regf Reg memary
n
S
+| Inst1 M Reg[: ? pm EReg
r.
ol Inst2 IM Reg DM Reg
r
d ; i
e| Inst3 Reg|: % pMm k- Reg
r :
Inst 4 Reaying instructjion i M Reg DM f-{Reg
from memory

O Fix with separate instr and data memories (IS and DS)

Fix with separate instr and data memories (I$ and D$) 21/29

Resolve Structural Hazard 2

S+ 1 3 —

S 0 Qs 0

Time (clock cycles)

Fix register:file access

hazard by doing

add $1, | m
Inst 1
Inst 2
add $2,51,

M

i

ed

reads in the second
half of the cycle and
-|- Dbl -l- Redgi writes in the first half

clock edge that controls

register writing

L T_T

clock edge that controls loading
of pipeline state registers

22/29

Background (Optional)

Clocking Methodologies

¢ Clocking methodology defines when signals can be read and when they can be
written

falling (negative) edge

clock cycle \

rising (positive) edge

clock rate = 1/(clock cycle)
e.g., 10 nsec clock cycle = 100 MHz clock rate
1 nsec clock cycle = 1 GHz clock rate

¢ State element design choices

® level sensitive latch

® master-slave and edge-triggered flipflops 24/29

Review: Latches vs Flipflops

¢ Output is equal to the stored value inside the element

¢ Change of state (value) is based on the clock
¢ Latches: output changes whenever the inputs change and the clock is asserted
(level sensitive methodology)
¢ Two-sided timing constraint
* Flip-flop: output changes only on a clock edge (edge-triggered methodology)

¢ One-sided timing constraint

A clocking methodology defines when signals can be read and written — would
NOT want to read a signal at the same time it was being written

25/29

Review: Design A Latch

J Store one bit of information: cross-coupled invertor
0 > 1
4 How to change the value stored?

R: reset signal

S: set signal

S|R| Q Q

010 Qn Qn

01 0 1
SR-Latch 1|0 1 0

i1 X '

other Latch structures

26/29

Review: Design A Flip-Flop

® Based on Gated Latch

Ol

® Master-slave positive-edge-triggered D flip-flop

Clock

Do D
E

ko

TI
O

27/29

Review: Latch and Flip-Flop

e Latch is level-sensitive

¢ Flip-flop is edge triggered

Q (latch)

Q (flop)

28/29

Our Implementation

® An edge-triggered methodology

¢ Typical execution
® read contents of some state elements

¢ send values through some combinational logic
® write results to one or more state elements

State State
» element element —
1 2
clock b

one clock cycle

¢ Assumes state elements are written on every clock cycle; if not, need explicit write
control signal

¢ write occurs only when both the write control is asserted and the clock edge
occurs 29/29

	Main Talk
	Motivations
	Pipeline Basis
	Structural Hazards
	Background (Optional)

