
CENG 3420
Computer Organization & Design

Lecture 08: Datapath

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 4.1 – 4.4)

2025 Spring

• We’re ready to look at an implementation of RISC-V

• Simplified to contain only:

• Memory-reference instructions: lw, sw
• Arithmetic-logical instructions: add, addu, sub, subu, and, or, xor,
nor, slt, sltu

• Arithmetic-logical immediate instructions: addi, addiu, andi, ori,
xori, slti, sltiu

• Control flow instructions: beq, j

• Generic implementation:

• Use the program counter (PC)
• To supply the instruction address and fetch the instruction

from memory (and update the PC)
• Decode the instruction (and read registers)
• Execute the instruction

Fetch
PC = PC+4

DecodeExec

2/24

The Processor: Datapath & Control

2/24

• Two types of functional units:

• elements that operate on data values (combinational)
• elements that contain state (sequential)

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register
Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Op

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc

PCSrc

Shift
Left 1

M
U
XAdd

• Single cycle operation

• Split memory (Harvard) model - one memory for instructions and one for data
3/24

Abstract Implementation View

3/24

1 Reading the instruction from the Instruction Memory

2 Updating the PC value to be the address of the next (sequential) instruction

3 PC is updated every clock cycle, so it does not need an explicit write control signal

4 Instruction Memory is read every clock cycle, so it doesn’t need an explicit read
control signal

Fetch
PC = PC+4

DecodeExec

clock

Read
Address Instruction

Instruction
Memory

Add

PC

4

4/24

Fetching Instructions

4/24

1 Sending the fetched instruction’s opcode and function field bits to the control unit

2 Reading two values from the Register File

3 (Register File addresses are contained in the instruction)

Fetch
PC = PC+4

DecodeExec Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

Control
Unit

5/24

Decoding Instructions

5/24

• Both RegFile read ports are active for all instructions during the Decode cycle

• Using the rs1 and rs2 instruction field addresses

• Since haven’t decoded the instruction yet, don’t know what the instruction is

• Just in case the instruction uses values from the RegFile do “work ahead” by reading
the two source operands

Question
Which instructions do make use of the RegFile values?

6/24

Reading Registers “Just in Case”

6/24

• Both RegFile read ports are active for all instructions during the Decode cycle

• Using the rs1 and rs2 instruction field addresses

• Since haven’t decoded the instruction yet, don’t know what the instruction is

• Just in case the instruction uses values from the RegFile do “work ahead” by reading
the two source operands

Question
Which instructions do make use of the RegFile values?

Reading Registers “Just in Case”

6/24

EX-1
All instructions (except j) use the ALU after reading the registers. Please analyze
memory-reference, arithmetic, and control flow instructions.

7/247/24

R format operations: add, sub, sll, slt, xor, srl, sra, or, and

• Perform operation (op, funct3 or funct7) on values in rs1 and rs2

• Store the result back into the Register File (into location rd)

• Note that Register File is not written every cycle (e.g. sw), so we need an explicit
write control signal for the Register File

Fetch
PC = PC+4

DecodeExec

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

8/24

Executing R Format Operations

8/24

• Remember the R format instruction slt

slt t0, s0, s1 # if s0 < s1
then t0 = 1
else t0 = 0

• Where does the 1 (or 0) come from to store into t0 in the Register File at the end of
the execute cycle?

Instruction

Write
register

Write
data

Read
register 2

Read
register 1

Imm
Gen

Registers

RegWrite
Add Sum

Add Zero

Read
data 1

Read
data 2

Shift
Left 1

32

PC from instruction datapath

Branch target

To branch control logic

4
ALU Operation

9/249/24

Consider the slt Instruction

9/24

Load and store operations have to
• compute a memory address by adding the base register (in rs1) to the 12-bit signed

offset field in the instruction

• base register was read from the Register File during decode
• offset value in the low order 12 bits of the instruction must be sign extended to

create a 32-bit signed value

• store value, read from the Register File during decode, must be written to the Data
Memory

• load value, read from the Data Memory, must be stored in the Register File

10/24

Executing Load and Store Operations

10/24

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register
Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Op

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc

PCSrc

Shift
Left 1

M
U
XAdd

11/24

Executing Load and Store Operations (cont.)

11/24

Branch operations have to
• compare the operands read from the Register File during decode (rs1 and rs2

values) for equality (zero ALU output)

• The 12-bit B-immediate encodes signed offsets in multiples of one byte.

• The 12-bit immediate offset is sign-extended and added to the address of the branch
instruction to give the target address.

12/24

Executing Branch Operations

12/24

Instruction

Write
register

Write
data

Read
register 2

Read
register 1

Imm
Gen

Registers

RegWrite
Add Sum

Add Zero

Read
data 1

Read
data 2

Shift
Left 1

32

PC from instruction datapath

Branch target

To branch control logic

4
ALU Operation

13/24

Executing Branch Operations (cont.)

13/24

• jal

• The J-immediate encodes a signed offset in multiples of 2 bytes.

• The offset is sign-extended and added to the address of the jump instruction to form
the jump target address.

14/24

Executing Jump Operations

14/24

• Assemble the datapath elements, add control lines as needed, and design the control
path

• Fetch, decode and execute each instruction in one clock cycle – single cycle design

• no datapath resource can be used more than once per instruction, so some must
be duplicated (e.g., why we have a separate Instruction Memory and Data
Memory)

• to share datapath elements between two different instruction classes will need
multiplexors at the input of the shared elements with control lines to do the
selection

• Cycle time is determined by length of the longest path

15/24

Creating a Single Datapath from the Parts

15/24

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Control

MemWrite

MemRead

32

16/24

Multiplex Insertion

16/24

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Control

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc
MemToReg

Multiplex Insertion

16/24

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Control

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc
MemToReg

Clock Cycle

System Clock

17/24

Clock Distribution

17/24

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Control

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc
MemToReg

Shift
Left 1

M
U
XAdd

PCSrc

18/24

Adding the Branch Portion

18/24

• We wait for everything to settle down

• ALU might not produce "right answer" right away
• Memory and RegFile reads are combinational (as are ALU, adders, muxes,

shifter, signextender)
• Use write signals along with the clock edge to determine when to write to the

sequential elements (to the PC, to the Register File and to the Data Memory)

• The clock cycle time is determined by the logic delay through the longest path

• (We are ignoring some details like register setup and hold times)

19/24

Our Simple Control Structure (Optional)

19/24

• Selecting the operations to perform (ALU, Register File and Memory read/write)

• Controlling the flow of data (multiplexor inputs)

• Information comes from the 32 bits of the instruction

Observations:
• opcode field always in bits 6-0

• address of two registers to be read are always specified by the rs1 and rs2 fields
(bits 19–15 and 24–20)

• base register for lw and sw always in rs1 (bits 19–15)

20/24

Summary: Adding the Control

20/24

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Control

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc
MemToReg

Shift
Left 1

M
U
XAdd

PCSrc

21/24

(Almost) Complete Single Cycle Datapath

21/24

Instruction
[19-15]

Instruction
[24-20]

PC InstructionRead
address

Instruction
Memory

Add

4

Write
register
Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Registers

Imm
Gen

ALU

zero
Address

Write
data

Read
data

Data
Memory

RegWrite

ALU Control

MemWrite

MemRead

32

M
U
X

M
U
X

ALUSrc
MemToReg

Shift
Left 1

M
U
XAdd

ALU
Control

ALUOp

Instruction
[11-7]

Instruction
 [31-0]

Instruction [30, 14-12]

PCSrc

(Almost) Complete Single Cycle Datapath

21/24

ALU’s operation based on instruction type and function code

ALU Control Function
0000 and
0001 or
0010 add
0110 subtract

22/24

ALU Control (Optional)

22/24

Controlling the ALU uses of multiple decoding levels
• main control unit generates the ALUOp bits

• ALUOp: add (00), subtract (01), determined by funct field (10),

• ALU control unit generates ALUcontrol bits

Instruction Function ALUOp funct7 funct3 ALUcontrol
lw add 00 xxxxxxx xxx 0010
sw add 00 xxxxxxx xxx 0010
beq subtract 01 xxxxxxx xxx 0110
add add 10 0000000 000 0010
sub subtract 10 0100000 000 0110
and and 10 0000000 111 0000
or or 10 0000000 110 0001

23/24

ALU Control (Optional)

23/24

Instruction [6-0]

1

0

Instruction
 [31-0]

Instruction [11-7]

Instruction [24-20]

Instruction [19-15]PC

Control

Shift
Left 1

ALU
Control

M
U
X

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Imm
Gen

ALU
Zero

ALU
Result

M
U
X

Address

Write data

Read data

1

M
U
X

Instruction [31-0]

Read address

Add Sum

Add

4

Instruction
Memory

Registers

Data
Memory

32

Instruction [30, 14-12]

ALUSrc

MemRead

0

1

RegWrite

MemWrite

ALUOp MemtoReg

Branch

0

4

PCSrc

24/24

(Almost) Complete Datapath with Control Unit

24/24

Instruction [6-0]

1

0

Instruction
 [31-0]

Instruction [11-7]

Instruction [24-20]

Instruction [19-15]PC

Control

Shift
Left 1

ALU
Control

M
U
X

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Imm
Gen

ALU
Zero

ALU
Result

M
U
X

Address

Write data

Read data

1

M
U
X

Instruction [31-0]

Read address

Add Sum

Add

4

Instruction
Memory

Registers

Data
Memory

32

Instruction [30, 14-12]

ALUSrc

MemRead

0

1

RegWrite

MemWrite

ALUOp MemtoReg

Branch

0

4

PCSrc

1
0

0

(Almost) Complete Datapath with Control Unit

24/24

Instruction [6-0]

1

0

Instruction
 [31-0]

Instruction [11-7]

Instruction [24-20]

Instruction [19-15]PC

Control

Shift
Left 1

ALU
Control

M
U
X

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Imm
Gen

ALU
Zero

ALU
Result

M
U
X

Address

Write data

Read data

1

M
U
X

Instruction [31-0]

Read address

Add Sum

Add

4

Instruction
Memory

Registers

Data
Memory

32

Instruction [30, 14-12]

ALUSrc

MemRead

0

1

RegWrite

MemWrite

ALUOp MemtoReg

Branch

0

4

PCSrc

1
0

1

(Almost) Complete Datapath with Control Unit

24/24

Instruction [6-0]

1

0

Instruction
 [31-0]

Instruction [11-7]

Instruction [24-20]

Instruction [19-15]PC

Control

Shift
Left 1

ALU
Control

M
U
X

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Imm
Gen

ALU
Zero

ALU
Result

M
U
X

Address

Write data

Read data

1

M
U
X

Instruction [31-0]

Read address

Add Sum

Add

4

Instruction
Memory

Registers

Data
Memory

32

Instruction [30, 14-12]

ALUSrc

MemRead

0

1

RegWrite

MemWrite

ALUOp MemtoReg

Branch

0

4

PCSrc

0
1

0

(Almost) Complete Datapath with Control Unit

24/24

Instruction [6-0]

1

0

Instruction
 [31-0]

Instruction [11-7]

Instruction [24-20]

Instruction [19-15]PC

Control

Shift
Left 1

ALU
Control

M
U
X

Write
register

Write
data

Read
register 2

Read
register 1

Read
data 1

Read
data 2

Imm
Gen

ALU
Zero

ALU
Result

M
U
X

Address

Write data

Read data

1

M
U
X

Instruction [31-0]

Read address

Add Sum

Add

4

Instruction
Memory

Registers

Data
Memory

32

Instruction [30, 14-12]

ALUSrc

MemRead

0

1

RegWrite

MemWrite

ALUOp MemtoReg

Branch

0

4

PCSrc

0
0

0

(Almost) Complete Datapath with Control Unit

24/24

