CENG 3420 @

Computer Organization & Design

Lecture 07: Floating Numbers

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapter 3.5)

2025 Spring

Floating Point Number

Scientific notation: 6.6254 x 10~%7

A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)

Scale factors to determine the position of the decimal point (e.g. 10-% indicates
position of decimal point and is called the exponent; the base is implied)

Sign bit

2/11

Normalized Form

¢ Floating Point Numbers can have multiple forms, e.g.

0.232 x 10* =2.32 x 10°
=23.2 x 10%
=2320. x 10°
= 232000. x 102

e Itis desirable for each number to have a unique representation => Normalized Form

* We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

* [1..2) for BINARY
* [1..10) for DECIMAL

3/11

IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java

32 bits
- L
|s | F | M
Sign of v v
8-bit signed 23-bit
number :
L. exponentin mantissa fraction
0 signifies +
- excess-127
1 signifies —
representation
E'-127
Value represented = *1LM x2
(a) Single precision
0joo0o1o01ro00o0jooro1o - . - 0
—
-87
Value represented = +1.001010 =--- 0 x 2

00101000 > 40

(b) Example of a single-precision number

40-127 =-87

4/11

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

64 bits
N E' M
Sign J 2 \
11-bit excess-1023 52-bit
exponent mantissa fraction
E'-1023
Value represented =+1L.M x2

(c) Double precision

5/11

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

6/11

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

7/11

Special Values

Exponents of all 0’s and all 1’s have special meaning

E=0, M=0 represents 0 (sign bit still used so there is +0)

E=0, M#£0 is a denormalized number +0.M x2 '“° (smaller than the smallest
normalized number)

E=All 1’s, M=0 represents £Infinity, depending on Sign
E=All 1’s, M#0 represents Nall

8/11

Ref: IEEE Standard 754 Numbers

® Normalized +/—1.d...d x 2¢xp

® Denormalized +/-0.d...d x 2min_exp - to represent near-zero numbers
e.g. + 0.0000...0000001 x 2-'26 for Single Precision

Format #bits # significant bits macheps # exponent bits exponent range
Single 32 1+23 224 (~1077) 8 2-126 _ 2+127 (~1(£38)
Double 64 1+52 2-53 (~10-16) 1 2-1022 _ 2+1023 (~q() £308)
Double Extended >=80 >=64 <=2-64(~10"19) >=15 2-16382 _ 2+16383 (~q () £4932)
(Double Extended is 80 bits on all Intel machines)
macheps =Machine Epsilon = = 2~ (#significand bits)

&

mach

vV V

normalized denormalized normalized
negative numbers pesitive
numbers numbers

9/11

Inaccurate Floating Point Operations

* E.g. Find 1%t root of a quadratic equation
* r=(—b +sqrt(b*b —4*a*c)) / (2*a)

Sparc processor, Solaris, gcc 3.3 (ANSI C),
Expected Answer 0.00023025562642476431
double 0.00023025562638524986
float 0.00024670246057212353

* Problem is that if c is near zero,
sqrt(b*b —4*a*c)~ b

* Rule of thumb: use the highest precision which does not give up too much speed

10/11

Catastrophic Cancellation

® (a-—b)isinaccurate when a~b

® Decimal Examples

O Using 2 significant digits to compute mean of 5.1 and 5.2
using the formula (a+b)/ 2:

a + b =10 (with 2 sig. digits, 10.3 can only be stored as 10)
10 /2 = 5.0 (the computed mean is less than both numbers!!!)

O Using 8 significant digits to compute sum of three numbers:
(11111113 + (-11111111)) + 7.5111111 =9.5111111
11111113 + ((=11111111) + 7.5111111) = 10.000000
® Catastrophic cancellation occurs when

| [round(x)"e" round(y)]—round(xe y)

>>¢

mach

round(xe y)

11/11

	Floating Point Number

