CENG 3420 Computer Organization \& Design

Lecture 07: Floating Numbers

Bei Yu

CSE Department, CUHK
byu@cse.cuhk.edu.hk
(Textbook: Chapter 3.5)

2024 Spring

Scientific notation: 6.6254×10^{-27}

- A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)
- Scale factors to determine the position of the decimal point (e.g. 10^{-27} indicates position of decimal point and is called the exponent; the base is implied)
- Sign bit
- Floating Point Numbers can have multiple forms, e.g.

$$
\begin{aligned}
0.232 \times 10^{4} & =2.32 \times 10^{3} \\
& =23.2 \times 10^{2} \\
& =2320 . \times 10^{0} \\
& =232000 . \times 10^{-2}
\end{aligned}
$$

- It is desirable for each number to have a unique representation => Normalized Form
- We normalize Mantissa's in the Range [1..R), where R is the Base, e.g.:
- [1..2) for BINARY
- [1..10) for DECIMAL

IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java

(a) Single precision

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

Value represented
$= \pm 1 . M \times 2^{E^{\prime}-1023}$
(c) Double precision

Question:

What is the IEEE single precision number $40 \mathrm{C} 0000_{16}$ in decimal?

Question:

What is -0.5_{10} in IEEE single precision binary floating point format?

Special Values

Exponents of all 0's and all 1's have special meaning

- $\mathrm{E}=0, \mathrm{M}=0$ represents 0 (sign bit still used so there is ± 0)
- $\mathrm{E}=0, \mathrm{M} \neq 0$ is a denormalized number $\pm 0 . \mathrm{M} \times 2^{-126}$ (smaller than the smallest normalized number)
- $\mathrm{E}=$ All 1's, $\mathrm{M}=0$ represents \pm Infinity, depending on Sign
- $\mathrm{E}=$ All 1 's, $\mathrm{M} \neq 0$ represents NaN
- Normalized $+/-1 . d . . . d \times 2{ }^{\exp }$
- Denormalized $+/-0 . d . . . d \times 2^{\text {min_exp }} \rightarrow$ to represent near-zero numbers e.g. $+0.0000 \ldots 0000001 \times 2^{-126}$ for Single Precision

$+,-, x, l$, sqrt, remainder, as well as conversion to and from integer are correctly rounded
- As if computed with infinite precision and then rounded
- Transcendental functions (that cannot be computed in a finite number of steps e.g., sine, cosine, logarithmic, , e, etc.) may not be correctly rounded

Exceptions and Status Flags

- Invalid Operation, Overflow, Division by zero, Underflow, Inexact

Floating point numbers can be treated as "integer bit-patterns" for comparisons

- If Exponent is all zeroes, it represents a denormalized, very small and near (or equal to) zero number
- If Exponent is all ones, it represents a very large number and is considered infinity (see next slide.)

Dual Zeroes: $+0(0 x 00000000)$ and $-0(0 x 80000000)$: they are treated as the same

Other Features

Infinity is like the mathematical one

- Finite / Infinity $\rightarrow 0$
- Infinity \times Infinity \rightarrow Infinity
- Non-zero / $0 \rightarrow$ Infinity
- Infinity $\{$ Finite or Infinity $\} \rightarrow$ Infinity

NaN (Not-a-Number) is produced whenever a limiting value cannot be determined:

- Infinity-Infinity \rightarrow NaN
- Infinity / Infinity \rightarrow NaN
- $0 / 0 \rightarrow \mathrm{NaN}$
- Infinity $\times 0 \rightarrow \mathrm{NaN}$
- If x is a $N a N, x \neq x$
- Many systems just store the result quietly as a NaN (all 1's in exponent), some systems will signal or raise an exception
- E.g. Find $1^{\text {st }}$ root of a quadratic equation
-r = (-b + sqrt(b*b-4*a*c)) /(2*a)

Sparc processor, Solaris, gcc 3.3 (ANSI C),

$$
\begin{array}{ll}
\text { Expected Answer } & 0.00023025562642476431 \\
\text { double } & 0.00023025562638524986 \\
\text { float } & 0.00024670246057212353
\end{array}
$$

- Problem is that if c is near zero,

$$
\operatorname{sqrt}\left(b^{*} b-4^{*} a * c\right) \approx b
$$

- Rule of thumb: use the highest precision which does not give up too much speed

Catastrophic Cancellation

- $(a-b)$ is inaccurate when $a \approx b$
- Decimal Examples
\bigcirc Using 2 significant digits to compute mean of 5.1 and 5.2 using the formula $(a+b) / 2$:
$a+b=10$ (with 2 sig. digits, 10.3 can only be stored as 10) $10 / 2=5.0$ (the computed mean is less than both numbers!!!)
O Using 8 significant digits to compute sum of three numbers:

$$
\begin{array}{r}
(11111113+(-11111111))+7.5111111=9.5111111 \\
11111113+((-11111111)+7.5111111)=10.000000
\end{array}
$$

- Catastrophic cancellation occurs when

$$
\left|\frac{[\operatorname{round}(x) " \bullet " \operatorname{round}(y)]-\operatorname{round}(x \bullet y)}{\operatorname{round}(x \bullet y)}\right| \gg \varepsilon_{\text {mach }}
$$

