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Arithmetic

Where we’ve been: abstractions
¢ Instruction Set Architecture (ISA)

® Assembly and machine language
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Arithmetic

Where we’ve been: abstractions
¢ Instruction Set Architecture (ISA)

® Assembly and machine language
What'’s up ahead: Implementing the ALU architecture
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Machine Number Representation

* Bits are just bits (have no inherent meaning)*
¢ Binary numbers (base 2) — integers
Of course, it gets more complicated:

¢ storage locations (e.g., register file words) are finite, so have to worry about overflow
(i.e., when the number is too big to fit into 32 bits)

¢ have to be able to represent negative numbers, e.g., how do we specify -8 in

addi Ssp, $sp, -8 #Ssp = Ssp - 8

¢ in real systems have to provide for more than just integers, e.g., fractions and real
numbers (and floating point) and alphanumeric (characters)

!conventions define the relationships between bits and numbers 6/41



RISC-V Representation

32-bit signed numbers (2’s complement):

0000 0000
0000 0000
0000 0000

0111 1111
0111 1111
1000 0000
1000 0000
1000 0000

1111 1111
1111 1111
1111 1111

0000
0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000 0000 0000

0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

0000
0000
0000

1111
1111
0000
0000
0000

1111
1111
1111

What if the bit string represented addresses?

0000.,, =

0001y =
00104, =

1110,,, =
1111,,, =
0000,,, =
0001,y =
0010,

1101, =

Oten

+ 2

lten

ten

2,147,483, 646,.,
2,147,483,647,.,
2,147,483,648,.,
2,147,483, 647,

- 2,147,483, 646,

- 3ten
1110, = -
1111, = -

2ten

1ten

® need operations that also deal with only positive (unsigned) integers
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Two’s Complement Operations

¢ Negating a two’s complement number — complement all the bits and then add a 1

® remember: “negate” and “invert” are quite different!

¢ Converting n-bit numbers into numbers with more than n bits:

¢ 16-bit immediate gets converted to 32 bits for arithmetic
¢ sign extend: copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010
1010 -> 1111 1010

® sign extension versus zero extend (1b vs. 1bu)
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Design the RISC-V Arithmetic Logic Unit (ALU)

¢ Must support the Arithmetic/Logic operations of the ISA

RV 321:

add, sub, mul, mulh, mulhu,

div, divu, rem, 1li, addi,

sra, or, xXor, not, slt,
srli, srai, andi, ori,

sltiu,

RV 6471:

addw, subw, remu, mulw,

remw, remuw, addiw, sllw,

srliw, sraiw,

® With special handling for:

mulhsu,

sll1,
sltu,

xori,

divw,
srlw,

® sign extend: addi, slti, sltiu

® zero extend: andi, xori
® Overflow detected: add,

addi,

sub

slti,

m (operation)
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RISC-V Arithmetic and Logic Instructions

31 20 19 15 14 1211 7 6
I-Type | Imm[11:0] I rs1 Ifunct3 I rd I opcode I
31 2524 20 19 15 14 1211 7 6
R-Type |funct7 [ rs2 [ rs1 [ funct3 |rd [opcode |
I-Type R-Type
Type opcode funct Imm[11:5] Type opcode funct
ADDI 0010011 000 xx (any) ADD 0110011 0000000 000
SLLI 0010011 001 0000000 SUB 0110011 0100000 000
SLTI 0010011 010  xx SLL 0110011 0000000 001
SLTIU 0010011 011  xx SLT 0110011 0000000 010
SRLI 0010011 101 0000000 SLTU 0110011 0000000 011
SRAI 0010011 101 0100000 XOR 0110011 0000000 100
ORI 0010011 110 xx SRL 0110011 0000000 101
ANDI 0010011 111 xx SRA 0110011 0100000 101
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Addition Unit
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Building a 1-bit Binary Adder

carry_in A B carry_in | carry_out S

| 0 0 0 0 0

A— 1bit 0 0 1 0 1
Ful |- S 0 1 0 0 1

B_, Adder 0 1 1 1 0
l 1 0 0 0 1

carry_out 1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S=A xor B xor carry_in
carry_out =A&B | A&carry_in | B&carry_in
(majority function)

* How can we use it to build a 32-bit adder?

¢ How can we modify it easily to build an adder/subtractor? 12/41



Building 32-bit Adder

| co=carry_in

Ay —| 1-bit
FA [~ So

] lcf ¢ Just connect the carry-out of the least significant bit FA to the
A ;}f't s, carry-in of the next least significant bit and connect ...

lc
Ay, —| 1-bit
FA [~ S:

-

* Ripple Carry Adder (RCA)

: ° ©: simple logic, so small (low cost)
| ca ® @: slow and lots of glitching (so lots of energy consumption)

Agr—] 1-bit
FA [ Sa

lcaz=carry_out
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Glitch

Glitch

invalid and unpredicted output that can be read by the next stage and result in a wrong
action

Example: Draw the propagation delay
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Glitch

invalid and unpredicted output that can be read by the next stage and result in a wrong
action

Example: Draw the propagation delay

O1
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Glitch

invalid and unpredicted output that can be read by the next stage and result in a wrong
action

Example: Draw the propagation delay

O1
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Glitch in RCA

| co=carry_in

Ao — 1-bit -

8, — FA S A B carry_in | carry_out S
Lo 0 0 0 0 0

A,—{ 1-bit

g, LFA [ 0 0 1 0 1
I3 0 1 0 0 1

Ay — 1-bit

B,—1 FA — S 0 1 1 1 (]
1Cs 1 0 0 0 1
: 1 0 1 1 0
| ca 1 1 0 1 0

Agr— 1-bit

By FA [~ St 1 1 1 1 1

l Czp=carry_out
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But What about Performance?

¢ Critical path of n-bit ripple-carry adder is n x CP

® Design trick: throw hardware at it (Carry Lookahead)

Carrylnq
A0 1-bit
BO ALU
JL CarryOut0
Carryln1
AT 1-bit
B1 ALU
CarryOut1
Carryln2JL amybu
A2 1-bit
B2 ALU
CarryOut2
Carryln3L amy-u
A3 1-bit
B3 ALU
lCarryOut3

Result0

Result1

Result2

Result3
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A 32-bit Ripple Carry Adder/Subtractor

e complement all the bits

control

(0=add 1—sub) —}D— B, if control =

1B, if control = 1

add/sub

e add a 1 in the least significant bit

A 0111
B - 0110
0001

-> 0111
-> + 1001
1

1 0001

| co=carry_in

1-bit
FA [~ So

I

1-bit
FA [~ Sy

I

1-bit
FA [~ Sz

g

J, C31

Bsr—

1-bit
FA [~ Saq

l Cgp=carry_out
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Tailoring the ALU to the ISA

Also need to support the logic operations (and, nor, or, xor)

° Bit wise operations (no carry operation involved)
® Need a logic gate for each function and a mux to choose the output

Also need to support the set-on-less-than instruction (slt)

¢ Uses subtraction to determine if (2 — b) < 0 (implies a < b)

Also need to support test for equality (bne, beq)

¢ Again use subtraction: (@ — b) = 0 impliesa = b

Also need to add overflow detection hardware

¢ overflow detection enabled only for add, addi, sub

Immediates are sign extended outside the ALU with wiring (i.e., no logic needed)
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A Simple ALU Cell with Logic Op Support

add/subt carry_in op

y y A

> result

111
AU

1-bit J
. _% FA

add/subt carry_out
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A Simple ALU Cell with Logic Op Support

add/subt carry_in o[)
i D |
) > 1
) >
mp: 3
—
—1 1-bit "
less 7
add/subt carry_out

Modifying the ALU Cell for s1t

result
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Moditying the ALU for s1t

First perform a subtraction

Make the result 1 if the subtraction yields a negative
result

Make the result 0 if the subtraction yields a positive
result

Tie the most significant sum bit (sign bit) to the low
order less input

™ resulty

™ result,

less

™ resultz,

4——|__+
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Overflow Detection

Overflow occurs when the result is too large to represent in the number of bits
allocated

¢ adding two positives yields a negative
¢ or, adding two negatives gives a positive
* or, subtract a negative from a positive gives a negative

® or, subtract a positive from a negative gives a positive

Question: prove you can detect overflow by:

Carry into MSB xor Carry out of MSB

o1
0 1\1\1 7 1 1 0 0o 4
+ 0 0 1 1 3 + 1 0 1 1 -5
1 0 1 0

-6 0 1 1 1 7
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Moditying the ALU for Overflow

add/subt
Ao

|| resulty

Bo

A

* Modify the most significant cell to resulty

determine overflow output setting

zero

* Enable overflow bit setting for signed 0
arithmetic (add, addi, sub)

>
results,

0 less ' |_ /] overflow
L5
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Overflow Detection and Effects

On overflow, an exception (interrupt) occurs

¢ Control jumps to predefined address for exception

Interrupted address (address of instruction causing the overflow) is saved for
possible resumption

Don’t always want to detect (interrupt on) overflow
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New Instructions

Category Instr Op Code Example Meaning
Arithmetic | add unsigned 0and 21 |addu $s1, $s2, $s3 | $s1 = $s2 + $s3
(R&I sub unsigned 0 and 23 | subu $s1, $s2, $s3 | $s1 = $s2 - $s3
format) 44 9 |addiu$s1, $52,6 |$s1=9s2+6

imm.unsigned
Data Id byte 24 lbu  $s1, 20($s2) | $s1 = Mem($s2+20)
Transfer | unsigned

Id half unsigned 25 lhu  $s1, 20($s2) | $s1 = Mem($s2+20)
Cond. setonlessthan | 0 and 2b |sltu $s1, $s2, $s3 | if ($s2<$s3) $s1=1
Branch unsigned else _
(I &R $S1 =0
format) set on less than b sltiu $s1, $s2, 6 if ($s2<6) $s1=1

imm unsigned else

$s1=0

® Sign extend: addi, addiu, slti

e Zero extend: andi,

* Overflow detected: add,

ori,

addi,

xori

sub
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Binary Representations
for Integers

In the early days of computing, designers made computers express numbers using unsigned binary.
And they were content.. Until there were negative numbers.

00101010 @ (@rar regoron)

To include negative numbers, designers came up with sign magnitude.

But the computer had to count backwards
‘the negative numbers.

000000007
100000007,
o
Plus, this introduced positive and negative zero. ,

Then designers created one’s complement.

Now computers only had to count
in one direction... But there were still two zeroes!

That took care of the negative numbers...

10000101

Finally, designers developed two's complement.
Now, there was only one zero.. And they were content.

00000000

[~ - [ B
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http://csillustrated.berkeley.edu/PDFs/posters/integer-representations-1-history-poster.pdf
http://csillustrated.berkeley.edu/PDFs/posters/integer-representations-1-history-poster.pdf

Multiplication & Division
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Multiplication

® More complicated than addition

¢ Can be accomplished via shifting and adding

0010 (multiplicand)
x 1011 (multiplier)

0010

0010 (partial product
0000 array)
0010

(product)

® Double precision product produced

¢ More time and more area to compute
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First Version of Multiplication Hardware

B
Multiplicand
Shift left |
64 bits
—
N .
_ Multiplier
64-bit ALU Shift right [
32 bits
\ 4
Product ) Control test )
Write
64 bits

Note: n-bit x n-bit needs 2n-bit adder
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Second Version of Multiplication Hardware

multiplicand
32-bivALU add
shift

product riot
’ H multiplier @

Note: n-bit x n-bit needs only n-bit adder
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Second Version: Example

0110
Multiplicand
A\ A\
) Add
4-bit ALU «
Shift right
Producty  Multiplier
niiat: [0/0[0]0]0]0[1[0() @
MultiplierO is 1

30/41



Second Version: Example

0110
Multiplicand
0000
A\ A\
, Add
4-bit ALU “
Shift right

Producty  Multiplier
aqs: [0/0/0[0/0/0]1/0/1 @
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Second Version: Example

0110

0000 Multiplicand
4-bit ALU “ Add
0110 Shift right

Producty  Multiplier
aqs: [0/0/0[0/0/0]1/0/1 @
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Second Version: Example

0110
Multiplicand
A\ A\
. Add
4-bit ALU “
Shift right

Producty  Multiplier
ace: [0]0[1]1]0]0]1]0]1 @
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Second Version: Example

0110
Multiplicand
A\ A\
) Add
4-bit ALU <
Shift right
Producty  Multiplier
snit. 0[0]0[1[1]0[0[1/0 @
Multiplier0 is O
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Second Version: Example

0110
Multiplicand
A\ A\
) Add
4-bit ALU <
Shift right
Producty  Multiplier
snirt: [0[0lo[o[1]1]0/o[d) @
MultiplierO is 1
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Second Version: Example

0110
Multiplicand
0001
A\ A\
, Add
4-bit ALU “
Shift right

Producty  Multiplier
ace: [0[0/00/1]1/0/0/1 @
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Second Version: Example

0110

0001 Multiplicand
4-bit ALU “ Add
o111 Shift right

Producty  Multiplier
ace: [0[0/00/1]1/0/0/1 @
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Second Version: Example

0110
Multiplicand
A\ A\
. Add
4-bit ALU “
Shift right

Producty  Multiplier
asa: [0]0[1[1]1[1]0]0]1 @
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Second Version: Example

0110
Multiplicand
A\ A\
) Add
4-bit ALU <
Shift right
Producty  Multiplier
snirt: |0[0[0[1[1]1]1]0[0) @
Multiplier0 is O
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Second Version: Example

0110
Multiplicand
A\ A\
, Add
4-bit ALU “
Shift right

Producty  Multiplier
sniri: [0[o]ofo[1]1]1]1]0 @

Final Result: 00011110 = 30
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RISC-V Multiply Instruction

¢ mul performs an 32-bit x 32-bit multiplication and places the lower 32 bits in the
destination register.

mul rd, rsl, rs2

31 25 24 20 19 15 14 12 11 76 0
| funct7 | rs2 [ rsl I funct3 | rd | opcode ‘
7 5 5 3 5 7

¢ mulh, mulhu, and mulhsu perform the same multiplication but return the upper 32
bits of the full 64-bit product, for signed xsigned, unsigned xunsigned, and
signed x unsigned multiplication respectively.
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Division

¢ Division is just a bunch of quotient digit guesses and left shifts and subtracts

n
n .« o o o quotient
eooeoeoloeee00D dividend
divisor e o 0 o \
o o o (
— e o o 0 partial
e o o ( > remainder
- e e e array
e o o ()
- e o o o
e o o o 7/ remainder

=|
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n Hardware

e
Divisor
Shift right
64 bits
<
\/ Quotient
64-bit ALU Shift left |-
32 bits

Remainder Control

Write test

64 bits A

FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the

left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with the
dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value
into the Remainder register.
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Dividing 1001010 by 1000
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RISC-V Divide Instruction

¢ div generates the reminder in hi and the quotientin 1o

div rd, rsl, rs2

31 25 24 20 19 15 14 12 11 76 0
\ funct? \ rs2 \ rsl | funct3 \ rd \ opcode |
7 5 5 3 5 7

® div perform an 32 bits by 32 bits signed integer division of rs1 by rs2, rounding
towards zero.

¢ divand divu perform signed and unsigned integer division of 32 bits by 32 bits.

¢ remand remu provide the remainder of the corresponding division operation.
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Shift Operations

¢ Shifts by a constant are encoded as a specialization of the I-type format. The operand
to be shifted is in rs1, and the shift amount is encoded in the lower 5 bits of the
I-immediate field.

srli rd, rsl, imm[4:0]
srai rd, rsl, imm[4:0]

31 26 25 24 20 19 15 14 1211 76 0
[ imm[11:6] [imm[5] | imm[4:0] | rsl | funct3 | rd | opcode |
6 1 5 5 3 5 7

¢ sl1liisalogical left shift; sr1i is a logical right shift; and srai. is an arithmetic
right shift.

® Logical shifts fill with zeros, arithmetic left shifts fill with the sign bit

The shift operation is implemented by hardware separate from the ALU

Using a barrel shifter, which would takes lots of gates in discrete logic, but is pretty easy

to implement in VLSI
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A Simple Shifter

Right nop Left

Bi-l

i Bit-Slice i
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Parallel Programmable Shifters

Shift amount (Sh,Sh,Sh,Sh,Shy)

Control = < Shift direction (left, right)
Shift type (logical, arithmetic)

Il
= =

5
O

Data In
Data
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Logarithmic Shifter Structure

Sh, !Sh,

Shy & right

shifts datain;,

Data Out

c
- of 0 ISh
@© 9Ny .
T E‘> or1 datain; :D_ D_dataoutl :>
(o) bits .
datain; 4
Shy & left
0,1
shifts
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Logarithmic Shifter Structure

Sh,!Sh, Sh, !Sh,

Sh, & right
c sgfifés shfif(t)s datain,,, 8
o ISh :> ©
®© 1 8
o [> or 1 or2 datain, :':)—I)—dataouti =
o bits bits . |
datain,,
Sh, & left
0,1 0,1,2,3
shifts  shifts
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Logarithmic Shifter Structure

Sh,!Sh, Sh,!Sh, Sh,!Sh,

shifts | shifts shifts

of 0 of 0 of 0
[‘> or 1 or2 or4

bits bits bits

Data In
Data Out

—
—

0,1 0,1,2,3 0,1,2,3,4,
shifts shifts 5,6,7
shifts
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Logarithmic Shifter Structure

Sh,!Sh, Sh,!Sh, Sh,!Sh, Sh, ISh,

o |shifts | shifts | shifts shifts g
— of 0 of 0 of 0 of 0 ©
%[‘> or1 | or2 or4 or8 E>}3'
=) bits bits bits bits a

—
j—

0,1 0,1,2,3 0,1,2,3,4, 0,1,2...15
shifts shifts 5,6,7 shifts
shifts
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Logarithmic Shifter Structure

Sh,!Sh, Sh,!Sh, Sh,!Sh,  Sh,!Sh, Sh,!Sh,
_ |shifts | shifts | shifts shifts shifts g
(—“ of 0 of 0 of 0 of 0 of 0 ©
TU'I:> or 1 or2 oré4 or8 or 16 jﬁg
=) bits bits bits bits bits a

—
—

0,1 0,1,2,3 0,1,2,3,4, 0,1,2...15 0,1,2...31
shifts shifts 5,6,7 shifts shifts
shifts
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