
CENG 3420
Computer Organization & Design

Lecture 02: ISA Introduction

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 1.3 & 2.1)

2024 Spring

Organization – First Glance

Components

• processor (datapath, control)

• input (mouse, keyboard)

• output (display, printer)

• memory (cache, main memory, disk drive, CD/DVD)

• network

Our primary focus: the processor (datapath and control) and its interaction with
memory systems

• Implemented using tens/hundreds of millions of transistors

• Impossible to understand by looking at each transistor

• We need abstraction!

What is a Computer?

3/31

Major Components of a Computer

4/31

CPU Memory Data
Storage

Display Network
Adapter

User I/O
Devices

Hardware

Kernel File
Systems

Device
Drivers

Security User API
System Call GUI

Operation System

Text
Editors

Music
Players

Video
Players

Web
Browsers Games Misc.

Utilities

Applications

Computer System

5/31

• Capabilities and performance characteristics of the principal Functional Units (FUs).
(e.g., register file, ALU, multiplexors, memories, ...)

• The ways those FUs are interconnected (e.g., buses)

• Logic and means by which information flow between FUs is controlled

• The machine’s Instruction Set Architecture (ISA)

• Register Transfer Level (RTL) machine description

Machine Organization

6/31

Control needs to have circuitry to
• Decide which is the next instruction and input it from memory

• Decode the instruction

• Issue signals that control the way information flows between datapath components

• Control what operations the datapath’s functional units perform

Datapath needs to have circuitry to
• Execute instructions - functional units (e.g., adder) and storage locations (e.g.,

register file)

• Interconnect the functional units so that the instructions can be executed as required

• Load data from and store data to memory

Processor Organization

7/31

Systems software

Applications software

Hardware

Operating System
• Supervising program that interfaces the user’s program with the hardware (e.g.,

Linux, iOS, Windows)

• Handles basic input and output operations

• Allocates storage and memory

• Provides for protected sharing among multiple applications

Compiler
• Translate programs written in a high-level language (e.g., C, Java) into instructions

that the hardware can execute

System Software

8/31

• Allow the programmer to think in a more natural language and for their intended
use (Fortran for scientific computation, Cobol for business programming, Lisp for
symbol manipulation, Java for web programming, ...)

• Improve programmer productivity – more understandable code that is easier to
debug and validate

• Improve program maintainability

• Allow programs to be independent of the computer on which they are developed
(compilers and assemblers can translate high-level language programs to the binary
instructions of any machine)

• Emergence of optimizing compilers that produce very efficient assembly code
optimized for the target machine

As a result, very little programming is done today at the assembler level

Advantages of Higher-Level Languages ?

9/31

C program

Assembly language program

Executable: Machine language

Library routineMachine language

Compiler

Assembler

Linker

Memory

Loader

Traditional Compilation Flow

10/31

• High-level language program (in C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly language program
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

Below the Program

11/31

• High-level language program (in C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly language program
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

Below the Program

11/31

Processor

Control

Datapath

Memory

000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Input Device Inputs Object Code

12/31

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

Object Code Stored in Memory

13/31

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

Object Code Stored in Memory

13/31

Processor

Control

Datapath

Memory000000 00100 00010 0001000000100000

Devices

Input

Output

Network

• Control decodes the instruction to determine what to execute

• Datapath executes the instruction as directed by control

Decode & Excute Codes

14/31

Processor

Control

Datapath

Memory

contents Reg #4 ADD contents Reg #2
results put in Reg #2

000000 00100 00010 0001000000100000

Devices

Input

Output

Network

• Control decodes the instruction to determine what to execute

• Datapath executes the instruction as directed by control

Decode & Excute Codes

14/31

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network
Fetch

DecodeExec

• Processor fetches the next instruction from memory

• How does it know which location in memory to fetch from next?

What Happens Next?

15/31

Processor

Control

Datapath

Memory

00000100010100000000000000000000
00000000010011110000000000000100
00000011111000000000000000001000

Devices

Input

Output

Network

Output Device Outputs Data

16/31

ISA

Operation System

Applications

Hardware

Software

Instruction Set Architecture

ISA – Bridge between Hardware & Software

18/31

CPU Memory Data
Storage

Display Network
Adapter

User I/O
Devices

Hardware

Kernel File
Systems

Device
Drivers

Security User API
System Call GUI

Operation System

Text
Editors

Music
Players

Video
Players

Web
Browsers Games Misc.

Utilities

Applications

Operation System

Applications

Hardware

Software

Instruction Set Architecture

C program

Assembly language program

Executable: Machine language

Library routineMachine language

Compiler

Assembler

Linker

Memory

Loader

Connection

19/31

Instruction Set Architecture (ISA)
The interface description separating the software and hardware

software

hardware

instruction set architecture

20/31

• ISA, or simply architecture – the abstract interface between the hardware and the
lowest level software that includes all the information necessary to write a machine
language program, including instructions, registers, memory access, I/O, ...

• Enables implementations of varying cost and performance to run identical software

• The combination of the basic instruction set (the ISA) and the operating system
interface is called the application binary interface (ABI)

• ABI: The user portion of the instruction set plus the operating system interfaces used
by application programmers. Defines a standard for binary portability across
computers.

Instruction Set Architecture (ISA)

21/31

1 Instructions are represented as numbers and, as such, are indistinguishable from data

2 Programs are stored in alterable memory (that can be read or written to) just like data

Stored-Program Concept

• Programs can be shipped as files of binary numbers – binary
compatibility

• Computers can inherit ready-made software provided they are
compatible with an existing ISA – leads industry to align
around a small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll
data

Source code in
C for Acct prg

Memory

Two Key Principles of Machine Design

22/31

The language of the machine
• Want an ISA that makes it easy to build the hardware and the compiler while

maximizing performance and minimizing cost

Our target: the RISC-V ISA
• similar to other ISAs developed since the 1980’s

• RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco,
NEC, Nintendo, Sony, ...

Design Goals

Maximize performance, minimize cost, reduce design time (time-to-market), minimize
memory space (embedded systems), minimize power consumption (mobile systems)

Assembly Language Instructions

23/31

RISC-V

Complex Instruction Set Computer (CISC)

Lots of instructions of variable size, very memory optimal, typically less registers.

• Intel x86

Reduced Instruction Set Computer (RISC)

Instructions, all of a fixed size, more registers, optimized for speed. Usually called a
“Load/Store” architecture.

• RISC-V, LC-3b, MIPS, ARM, Sun SPARC, HP PA-RISC, IBM PowerPC ...

CISC vs. RISC

25/31

• Used in many embedded systems

• E.g., Nintendo-64, Playstation 1, Playstation 2

History of MIPS (cont.)

26/31

RISC Philosophy

• fixed instruction lengths

• load-store instruction sets

• limited number of addressing modes

• limited number of operations

• Instruction sets are measured by how well compilers use them as opposed to how
well assembly language programmers use them

RISC – Reduced Instruction Set Computer

27/31

Simplicity favors regularity
• fixed size instructions

• small number of instruction formats

• opcode always the first 6 bits

Smaller is faster
• limited instruction set

• limited number of registers in register file

• limited number of addressing modes

Make the common case fast
• arithmetic operands from the register file (load-store machine)

• allow instructions to contain immediate operands

Good design demands good compromises
• For RV32I, 4 base instruction formats (R/I/S/U) and 2 extended instruction formats

(B/J)

RISC-V (RISC) Design Principles

28/31

RISC-V

• An open standard instruction set architecture (ISA)

• A clean break from the earlier MIPS-inspired designs

• Modular ISA organization

• Open standards, numerous proprietary and open-source cores

• Managed by RISC-V Foundation

Welcome to RISC-V

29/31

Instruction Categories
• Load and Store instructions

• Bitwise instructions

• Arithmetic instructions

• Control transfer instructions

• Pseudo instructions

4 Base Instruction Formats: all 32 bits wide

The RISC-V ISA I

30/31

Register Names ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register

x6-7 t1 - t2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 s1 Saved register

x10-11 a0-a1 Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

Register names and descriptions

31/31

	Organization – First Glance
	ISA
	RISC-V

