CENG 3420 Midterm (2024 Spring)

Name: \qquad ID:
Q0 (0 marks)

1. What is your last digit of your SID (0 is regarded as 10)? This value is defined as NUM_1 in the whole question paper.
2. What is your last two digits of your SID (00 is regarded as 100)? This value is defined as NUM 2 in the whole question paper.
3. What is your last three digits of your SID? This value is defined as NUM_3 in the whole question paper.

Example: if your SID is 12345678 , then NUM_1 $=8$, NUM_2 $=78$, NUM_ $_{-}=678$.
Q1 (30 marks) Select and fill the single correct answer.

1. Which one is not a component of a computer?
(A) processor
(B) I/O
(C) memory
(D) fan
2. RV32I has a \qquad instruction length with \qquad general-purpose registers.
(A) 32-bit 32
(B) 32-bit 64
(C) 32-bit 16
(D) 64-bit 32
3. In the S-type instruction, why we split imm into different portions?

imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode

(A) To align most imm bits among different types
(B) To follow IEEE standard
(C) To follow ACM standard
(D) To ease user understanding
4. Inside our CPU, do we need to implement substraction hardware? Why?
(A) Yes; substraction hardware is via very clear design
(B) Yes; we follow the same idea as adder hardware
(C) No; we can use adder hardware to implement substraction
(D) No; compiler will help to translate all substractions into addings
5. Which instruction is equivalent to the following program? (blt: branch less than; ble: branch if \leq; bgt: branch if $>$; bge: branch if \geq)
slt t0, s1, s2
beq t0, zero, Label
(A) blt s1, s2, Label
(B) ble s1, s2, Label
(C) bgt s1, s2, Label
(D) bge s1, s2, Label
6. When we compile a Recursive Procedure, the return address is \qquad and stored in \qquad .
(A) ra; stack
(B) ra; heap
(C) a0; stack
(D) a0; heap
7. In signed binary representation, we use 2-complementary format, and which one is NOT the reason:
(A) Single " 0 "
(B) $a+(-a)=" 0$ "
(C) Ease substraction
(D) Ease multiplication
8. We have the registers $t 1=0 \times F E D C B A 98$, the value of $t 2$ for the following sequence of instructions is \qquad .

```
slli t2, t1, 24
srai t2, t1, 24
```

(A) $0 \times \mathrm{FEEDCBA} 98$
(B) 0×00000098
(C) $0 \times 0000 \mathrm{BA} 98$
(D) $0 \times x$ FFFFFF 98
9. In datapath, will we conduct register file (RF) reading and decoding at the same time?
(A) No; we should be decoding first so that we know where is the RF rading address
(B) No; we do RF reading first
(C) Yes; we read RF at the same time so that our datapath can be faster
(D) Yes; in the instruction we dont encode RF address
10. Dividing 11100_{2} by 11_{2}, the quotient is \qquad and the reminder is \qquad .
(A) $1000_{2} \quad 01_{2}$
(B) $1110_{2} \quad 00_{2}$
(C) $1001_{2} \quad 01_{2}$

A1 1. D
2. A
3. A
4. C
5. D
6. A
7. D
8. X
9. C
10. C

Q2 (10\%) Consider the following RISC-V instructions. Please note that we treat NUM_1\%2 and NUM_1\%2+1 as decimal values.

```
li a1, NUM_1%2
li a2, NUM_1%2+1
li a3, 4
LOOP:
slti t0, a3, 1
bne t0, zero, DONE
add a4, a1, a2
addi a1, a2, 1
addi a2, a4, 1
addi a3, a3, -1
jal x0, LOOP
DONE:
# end of the program
```

1. How many times is the branch instruction (bne) executed? (4\%)
2. What are the final values of a1 and a2. (6\%)

A2 These are suggested solutions.

1. The branch instruction (bne) will be executed 5 times.
2. (a) If NUM_ $1 \% 2=0, \mathrm{a} 1=10, \mathrm{a} 2=16$;
(b) If NUM_1\%2 $=1, \mathrm{a} 1=15, \mathrm{a} 2=24$;

Q3 (10\%) We have an int (32 bits) array named $\operatorname{arr} 1=\{0 x 01,0 \times 23,0 \times 45,0 x 67,0 x 89\}$. The pointer of arrl's first element stored in register a1. We also have the registers $\mathrm{t} 1=0 \times 12345678$, t2 = 0xFEDCBA98
Please answer the following questions:
(Each question is stand-alone. Instructions in one question won't affect registers in other questions.)

1. What is the value of $t 3$ for the following sequence of instructions? (2%)
```
lw a2, 4(a1)
addi t3, a2, NUM_1
```

2. What is the value of $t 1$ for the following sequence of instructions? (4\%)
```
slli t1, t1, 16
srli t1, t1, 20
```

3. What is the value of $t 2$ for the following sequence of instructions? (4\%)
```
slli t2, t2, 24
srai t2, t2, 24
```

A3 1. NUM_1 + 0x23
2. $0 x 00000567$
3. 0xFFFFFF98

Q4 (10\%) A RISC-V assembly program is shown below.

```
main:
li a1, 5
jal ra, foobar
j exit
foobar:
addi sp, sp, -8
# Missing line 1
# Missing line 2
li a0, 1
blt a1, a0, exit_foobar
addi s0, a1, 0
addi a1, a1, -1
jal ra, foobar
mul a0, a0, so
exit_foobar:
# Missing line 3
# Missing line 4
addi sp, sp, 8
jr ra
exit:
```

Note: blt is branch if less than.

1. Write down the missing lines to save and restore two registers. Hint: One of them is $s 0$. The other one is critical for function call. (5\%)
2. What is the final value of $a 0$? (5%)

A4 1. - sw s0, 0 (sp)

- sw ra, 4(sp)
- lw s0, 0(sp)
- lw ra, 4(sp)

2. 120 or 0×78

Q5 (10\%) What is -2024.5_{10} in IEEE-754 single precision binary floating point format? Write your transformation process and convert the binary representation to a hexadecimal number with " 0 x " beginning.

A5 1. -2024.5 to binary $11111101000.1000000000000 \ldots$
2. $11111101000.10000 \ldots=1.11111010001000000000000 \times 2^{10}$
3. signal bit $=1$, exponent $=10+127=137=10001001_{2}$
4. mantissa 11111010001000000000000 (hide the leftmost ' 1 ')
5. final result $11000100111111010001000000000000=0 x C 4 F D 1000$

Q6 (15\%) The figure below shows the format and datapath of an R format instruction.

1. Assume we have an instruction whose machine code is $0 \times 0040 \mathrm{C} 1 \mathrm{~B} 3$. Please write down the instruction in assembly language. The registers are $\mathrm{x} 0, \mathrm{x} 1, \ldots, \mathrm{x} 31$. (5\%)
2. Please use lines to connect the hardware and the corresponding function.(4\%)

Function

- Fetch and Updata PC
- Decode Instruction
- Execute
- Write/Read Data

Hardware

Registers
Instruction Memory, PC and Add
Data memory
ALU
3. - a.In the datapath, which is the factor will determine the cycle time of instructions? (3\%)

- b. Why do we need MUX in the datapath? (3\%)

2524		2019	1514	1211	76	0
funct7	rs2	rs1	funct3	rd	opcode	

Inst	Name	FMT	Opcode	funct3	funct7
add	ADD	R	0110011	0×0	0×00
sub	SUB	R	0110011	0×0	0×20
xor	XOR	R	0110011	0×4	0×00
or	OR	R	0110011	0×6	0×00
and	AND	R	0110011	0×7	0×00
sll	Shift Left Logical	R	0110011	0×1	0×00
srl	Shift Right Logical	R	0110011	0×5	0×00
sra	Shift Right Arith*	R	0110011	0×5	0×20
slt	Set Less Than	R	0110011	0×2	0×00
sltu	Set Less Than (U)	R	0110011	0×3	0×00

1. x or $\mathrm{x} 3, \mathrm{x} 1, \mathrm{x} 4$
2. - Fetch and Updata PC — Instruction Memory, PC and Add

- Decode Instruction — Registers
- Execute - ALU
- Write/Read Data ——Data memory

3. a.The longest path (or The critical path).(Other reasonable answers will also get the marks)
4. b.To share datapath elements between two different instruction classes. (Other reasonable answers will also get the marks)

Q7 (15\%) In $C P U_{A}$ with clock cycle equal to 1 ns , assuming negligible delays (for muxes, control unit, sign extend, PC access, shift left2, wires) except:

- Instruction fetch and update PC (IF), Read/write data from/to data memory (MEM) ($3+$ NUM_1\%2 ns)
- Execute R-type; Calculate memory address (EXE) (2 ns)
- Register fetch and instruction decode (ID), Write the result data into the register file (WB) (1 ns)

1. Calculate the delay time for the following instructions: beq, R/I-type instruction, sw, lw
2. Assuming the total number of instructions of $C P U_{A}$ are 10 (beq, sw, lw and 7 R/I-type instruction) and these instructions appear with equal probability in a program, what is the CPI of $C P U_{A}$?
3. Assuming that the clock rate (frequency) of $C P U_{A}$ is 1.2 times that of $C P U_{B}$, the CPI of $C P U_{B}$ is 0.75 times that of $C P U_{A}$ and the same number of instructions for both, which CPU is faster comparing to CPU time ($=C P I \times C C \times I C$)?

A7 These are suggested solutions. Assume NUM_1 $=0$, then

1. \# of delay time beq $=I F+I D+E X E=6 \mathrm{~ns}$ \# of delay time R/I-Type $=I F+I D+E X E+W B=7 \mathrm{~ns}$ \# of delay time $\mathrm{lw}=\mathrm{IF}+\mathrm{ID}+\mathrm{EXE}+\mathrm{MEM}+\mathrm{WB}=10 \mathrm{~ns}$ $\#$ of delay time $\mathrm{sw}=I F+I D+E X E+M E M=9 \mathrm{~ns}$
2. $\mathrm{CPI}=\frac{6+7 * 7+10+9}{10 \times 1}=7.4$
3. $\mathrm{CPU} \mathrm{Time} B=0.75 \times C P I_{A} \times 1.2 \times C C_{A} \times I C_{A}=0.9 \times \mathrm{CPU} \mathrm{Time}_{A}, C P U_{B}$ is faster because it has smaller CPU Time.

Assume NUM_1 $=1$, then

1. \# of delay time beq $=I F+I D+E X E=7 \mathrm{~ns}$ \# of delay time R/I-Type $=I F+I D+E X E+W B=8$ ns $\#$ of delay time $1 \mathrm{w}=\mathrm{IF}+\mathrm{ID}+\mathrm{EXE}+\mathrm{MEM}+\mathrm{WB}=12 \mathrm{~ns}$ $\#$ of delay time $\mathrm{sw}=I F+I D+E X E+M E M=11 \mathrm{~ns}$
2. $\mathrm{CPI}=\frac{7+7 * 8+12+11}{10 \times 1}=8.6$
3. CPU Time $B=0.75 \times C P I_{A} \times 1.2 \times C C_{A} \times I C_{A}=0.9 \times \mathrm{CPU} \mathrm{Time}_{A}, C P U_{B}$ is faster because it has smaller CPU Time.
