CENG 3420 @

Computer Organization & Design

Lecture 15: Virtual Memory

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 5.7)

Spring 2023

Overview

@ Introduction

@ Virtual Memory
21 VA — PA
2.2 TLB

2/19

Introduction

P

Motivations

Physical memory may not be as large as “possible address space” spanned by a
processor, e.g.

® A processor can address 4G bytes with 32-bit address

¢ But installed main memory may only be 1GB

How if we want to simultaneously run many programs which require a total memory
consumption greater than the installed main memory capacity?

Terminology:

¢ A running program is called a process or a thread

¢ Operating System (OS) controls the processes

4/19

Virtual Memory

¢ Use main memory as a “cache” for secondary memory
¢ Each program is compiled into its own virtual address space

* What makes it work? Principle of Locality

5/19

Virtual Memory

¢ Use main memory as a “cache” for secondary memory
¢ Each program is compiled into its own virtual address space

* What makes it work? Principle of Locality

Why virtual memory?
¢ During run-time, virtual address is translated to a physical address
¢ Efficient & safe sharing memory among multiple programs
¢ Ability to run programs larger than the size of physical memory

¢ Code relocation: code can be loaded anywhere in main memory

5/19

Bottom of the Memory Hierarchy

Consider the following example:

Suppose we hit the limit of 1GB in the example, and we suddenly need some more
memory on the fly.

We move some main memory chunks to the harddisk, say, 100MB.
So, we have 100MB of “free” main memory for use.

What if later on, those instructions / data in the saved 100MB chunk are needed
again?

We have to “free” some other main memory chunks in order to move the instructions
/ data back from the harddisk.

6/19

Two Programs Sharing Physical Memory

® A program’s address space is divided into pages (fixed size) or segments (variable
sizes)

Program 1
virtual address space

T

main memory

\>\\\\

7/19

Two Programs Sharing Physical Memory

® A program’s address space is divided into pages (fixed size) or segments (variable

sizes)

Program 1
virtual address space

main memory

\>\\\\

Program 2
al address space

1401

7/19

Virtual Memo y Organization

¢ Part of process(es) are stored temporarily on
harddisk and brought into main memory as needed

¢ This is done automatically by the OS, application
program does not need to be aware of the existence of
virtual memory (VM)

® Memory management unit (MMU) translates virtual
addresses to physical addresses

Processor

Data

Virtual address

Physical address

Cache

Data

Physical address

Main memory

DMA transfer

Disk storage

8/19

Virtual Memory

P

Address Translation

® Memory divided into pages of size ranging from 2KB to 16KB

¢ Page too small: too much time spent getting pages from disk
® Page too large: a large portion of the page may not be used
¢ This is similar to cache block size issue (discussed earlier)

* For harddisk, it takes a considerable amount of time to locate a data on the disk but
once located, the data can be transferred at a rate of several MB per second.

¢ If pages are too large, it is possible that a substantial portion of a page is not used but
it will occupy valuable space in the main memory.

10/19

Address Translation

¢ An area in the main memory that can hold one page is called a page frame.

¢ Processor generates virtual addresses
¢ MS (high order) bits are the virtual page number
¢ LS (low order) bits are the offset
¢ Information about where each page is stored is maintained in a data structure in the
main memory called the page table

¢ Starting address of the page table is stored in a page table base register
¢ Address in physical memory is obtained by indexing the virtual page number
from the page table base register

11/19

Address Translation

¢ Virtual address — physical address by combination of HW /SW
¢ Each memory request needs first an address translation

¢ Page Fault: a virtual memory miss

3130 1211 ... 10
Vir'tual Address (VA) | virtual page num page offset
\
Translation
. L] Y
Physical Address (PA) [physicalpage num page offset
29 28 1211 ... 10

12/19

Address Translation Mechanisms

Virtual page
number

[

Page table
Physical page or

Valid disk address

Physical memory

\ Disk storage

Y Y) Y Y) R R Y

B

N

¢ Page Table: in main memory

¢ Process: page table + program counter + registers

13/19

Virtual Addressing with a Cache

Disadvantage of virtual addressing;:
¢ One extra memory access to translate a VA to a PA

° memory (cache) access very expensive...

VA PA : _

CPU > Translation » Cache [miss . Main
Memory
hit data

14/19

Translation Look-aside Buffer (TLB)

¢ A small cache: keeps track of recently used address mappings

¢ Avoid page table lookup

VA PA . .
CPU - TLB » Cache |miss .| Main
a Memory
missl T data
hit
Translation
Y

15/19

Translation Look-aside Buffer (TLB)

Virtual page Physical page
number Valid Dirty Ref Tag address
[
1/0]1 -~
1 1 1 -~ Physical memory
1/0]1 ~.
o0[ofo
1/0]1 ~
Page table
Physical page
ValidDirty Ref or disk address
1/0]1 —
1[0]0 L Disk storage
1]0/0 — 9
1/0]1 L
0J0[0 o [
1101 Cd]
K Ay A |
ofo[0
BEIK ¢ [
1]1]1 4
0|0[0 i
1[1]1 <

¢ Dirty bit:

® Ref bit:
16/19

More about TLB

Organization:

¢ Just like any other cache, can be fully associative, set associative, or direct mapped.

Access time:
® Faster than cache: due to smaller size

¢ Typically not more than 512 entries even on high end machines

A TLB miss:

¢ If the page is in main memory: miss can be handled; load translation info from page
table to TLB

¢ If the page is NOT in main memory: page fault

17/19

TLB Event Combinations

e TLB / Cache miss: page / block not in “cache”

¢ Page Table miss: page NOT in memory

TLB | Page Table Cache Possible? Under what circumstances?
Hit Hit Hit
Hit Hit Miss
Miss Hit Hit
Miss Hit Miss
Miss Miss Miss
Hit Miss Miss / Hit
Miss Miss Hit

18/19

TLB Event Combinations

e TLB / Cache miss: page / block not in “cache”

¢ Page Table miss: page NOT in memory

TLB | Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes — what we want!
Hit Hit Miss Yes — although page table is not
checked if TLB hits
Miss Hit Hit Yes — TLB miss, PA in page table
Miss Hit Miss Yes — TLB miss, PA in page table but
data not in cache
Miss Miss Miss Yes — page fault
Hit Miss Miss / Hit
Miss Miss Hit

18/19

TLB Event Combinations

e TLB / Cache miss: page / block not in “cache”
¢ Page Table miss: page NOT in memory

TLB | Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes — what we want!
Hit Hit Miss Yes — although page table is not
checked if TLB hits
Miss Hit Hit Yes — TLB miss, PA in page table
Miss Hit Miss Yes — TLB miss, PA in page table but
data not in cache
Miss Miss Miss Yes — page fault
Hit Miss Miss / Hit | Impossible — TLB translation not possible
if page is not in memory
Miss Miss Hit Impossible — data not allowd in cache if
page is not in memory

18/19

QUESTION: Why Not a Virtually Addressed Cache?

Access Cache using virtual address (VA)

Only address translation when cache misses

Answer:

VA

PA i
CPU > Translation > Main
Memory
data
hit Cache

19/19

QUESTION: Why Not a Virtually Addressed Cache?

Access Cache using virtual address (VA)

Only address translation when cache misses

VA PA ;
CPU > Translation > Main
Memory
data
hit Cache ‘—‘

Answer:
aliasing: 2 programs may share data w. different VAs for the same PA

Coherence issues: must update all cache entries with same PAs

19/19

	Main Talk
	Introduction
	Virtual Memory
	VA PA
	TLB

