
CENG 3420
Computer Organization & Design

Lecture 15: Virtual Memory

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 5.7)

Spring 2023

1 Introduction

2 Virtual Memory
2.1 VA → PA
2.2 TLB

Overview

2/19

Introduction

Physical memory may not be as large as “possible address space” spanned by a
processor, e.g.

• A processor can address 4G bytes with 32-bit address

• But installed main memory may only be 1GB

How if we want to simultaneously run many programs which require a total memory
consumption greater than the installed main memory capacity?

Terminology:
• A running program is called a process or a thread

• Operating System (OS) controls the processes

Motivations

4/19

• Use main memory as a “cache” for secondary memory

• Each program is compiled into its own virtual address space

• What makes it work? Principle of Locality

Why virtual memory?
• During run-time, virtual address is translated to a physical address

• Efficient & safe sharing memory among multiple programs

• Ability to run programs larger than the size of physical memory

• Code relocation: code can be loaded anywhere in main memory

Virtual Memory

5/19

• Use main memory as a “cache” for secondary memory

• Each program is compiled into its own virtual address space

• What makes it work? Principle of Locality

Why virtual memory?
• During run-time, virtual address is translated to a physical address

• Efficient & safe sharing memory among multiple programs

• Ability to run programs larger than the size of physical memory

• Code relocation: code can be loaded anywhere in main memory

Virtual Memory

5/19

Consider the following example:
• Suppose we hit the limit of 1GB in the example, and we suddenly need some more

memory on the fly.

• We move some main memory chunks to the harddisk, say, 100MB.

• So, we have 100MB of “free” main memory for use.

• What if later on, those instructions / data in the saved 100MB chunk are needed
again?

• We have to “free” some other main memory chunks in order to move the instructions
/ data back from the harddisk.

Bottom of the Memory Hierarchy

6/19

• A program’s address space is divided into pages (fixed size) or segments (variable
sizes)

main memory

Program 1
virtual address space

Two Programs Sharing Physical Memory

7/19

• A program’s address space is divided into pages (fixed size) or segments (variable
sizes)

main memory

Program 1
virtual address space

Program 2
virtual address space

Two Programs Sharing Physical Memory

7/19

• Part of process(es) are stored temporarily on
harddisk and brought into main memory as needed

• This is done automatically by the OS, application
program does not need to be aware of the existence of
virtual memory (VM)

• Memory management unit (MMU) translates virtual
addresses to physical addresses

Virtual Memory Organization

8/19

Virtual Memory

• Memory divided into pages of size ranging from 2KB to 16KB

• Page too small: too much time spent getting pages from disk
• Page too large: a large portion of the page may not be used
• This is similar to cache block size issue (discussed earlier)

• For harddisk, it takes a considerable amount of time to locate a data on the disk but
once located, the data can be transferred at a rate of several MB per second.

• If pages are too large, it is possible that a substantial portion of a page is not used but
it will occupy valuable space in the main memory.

Address Translation

10/19

• An area in the main memory that can hold one page is called a page frame.

• Processor generates virtual addresses

• MS (high order) bits are the virtual page number
• LS (low order) bits are the offset

• Information about where each page is stored is maintained in a data structure in the
main memory called the page table

• Starting address of the page table is stored in a page table base register
• Address in physical memory is obtained by indexing the virtual page number

from the page table base register

Address Translation

11/19

• Virtual address → physical address by combination of HW/SW

• Each memory request needs first an address translation

• Page Fault: a virtual memory miss

Translation

Virtual Address (VA)

Physical Address (PA)

page offsetvirtual page num

31 30 . . . 12 11 . . . 1 0

29 28 . . . 12 11 . . . 1 0

page offsetphysical page num

Address Translation

12/19

• Page Table: in main memory

• Process: page table + program counter + registers

Address Translation Mechanisms

13/19

Disadvantage of virtual addressing:
• One extra memory access to translate a VA to a PA

• memory (cache) access very expensive...

VA PA miss

datahit

CPU Translation Cache Main
Memory

Virtual Addressing with a Cache

14/19

• A small cache: keeps track of recently used address mappings

• Avoid page table lookup

VA PA miss

data
hit

CPU Cache Main
MemoryTLB

Translation

miss

Translation Look-aside Buffer (TLB)

15/19

• Dirty bit:

• Ref bit:

Translation Look-aside Buffer (TLB)

16/19

Organization:
• Just like any other cache, can be fully associative, set associative, or direct mapped.

Access time:
• Faster than cache: due to smaller size

• Typically not more than 512 entries even on high end machines

A TLB miss:
• If the page is in main memory: miss can be handled; load translation info from page

table to TLB

• If the page is NOT in main memory: page fault

More about TLB

17/19

• TLB / Cache miss: page / block not in “cache”

• Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit
Hit Hit Miss

Miss Hit Hit
Miss Hit Miss

Miss Miss Miss
Hit Miss Miss / Hit

Miss Miss Hit

TLB Event Combinations

18/19

• TLB / Cache miss: page / block not in “cache”

• Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes – what we want!
Hit Hit Miss Yes – although page table is not

checked if TLB hits
Miss Hit Hit Yes – TLB miss, PA in page table
Miss Hit Miss Yes – TLB miss, PA in page table but

data not in cache
Miss Miss Miss Yes – page fault
Hit Miss Miss / Hit

Miss Miss Hit

TLB Event Combinations

18/19

• TLB / Cache miss: page / block not in “cache”

• Page Table miss: page NOT in memory

TLB Page Table Cache Possible? Under what circumstances?
Hit Hit Hit Yes – what we want!
Hit Hit Miss Yes – although page table is not

checked if TLB hits
Miss Hit Hit Yes – TLB miss, PA in page table
Miss Hit Miss Yes – TLB miss, PA in page table but

data not in cache
Miss Miss Miss Yes – page fault
Hit Miss Miss / Hit Impossible – TLB translation not possible

if page is not in memory
Miss Miss Hit Impossible – data not allowd in cache if

page is not in memory

TLB Event Combinations

18/19

QUESTION: Why Not a Virtually Addressed Cache?

• Access Cache using virtual address (VA)

• Only address translation when cache misses

VA PA

data

hit

CPU Main
MemoryTranslation

Cache

Answer:

• aliasing: 2 programs may share data w. different VAs for the same PA

• Coherence issues: must update all cache entries with same PAs

19/19

QUESTION: Why Not a Virtually Addressed Cache?

• Access Cache using virtual address (VA)

• Only address translation when cache misses

VA PA

data

hit

CPU Main
MemoryTranslation

Cache

Answer:
• aliasing: 2 programs may share data w. different VAs for the same PA

• Coherence issues: must update all cache entries with same PAs

19/19

	Main Talk
	Introduction
	Virtual Memory
	VA PA
	TLB

