
CENG 3420
Computer Organization & Design

Lecture 13: Cache

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 5.3–5.4)

Spring 2023

1 Introduction

2 Direct Mapping

3 Associative Mapping

4 Replacement

5 Conclusion

Overview

2/38

Introduction

• Aim: to produce fast, big
and cheap memory

• L1, L2 cache are usually
SRAM

• Main memory is DRAM

• Relies on locality of
reference

Processor

Primary
cache

Secondary
cache

Main

Magnetic disk

memory

Increasing
size

Increasing
speed

secondary
memory

Increasing
cost per bit

Registers

L1

L2

Increasing
latency

Memory Hierarchy

4/38

• A way to record which part of the Main Memory is now in cache

• Synonym: Cache line == Cache block

• Design concerns:

• Be Efficient: fast determination of cache hits/ misses

• Be Effective: make full use of the cache; increase probability of cache hits

Two questions to answer (in hardware)

Q1 How do we know if a data item is in the cache?

Q2 If it is, how do we find it?

Cache-Main Memory Mapping

5/38

• Cache size == Main Memory size

• Trivial one-to-one mapping

• Do we need Main Memory any more?

Cache

64kB

FAST

Main
Memory

64kB

SLOW

CPU

FASTEST

Imagine: Trivial Conceptual Case

6/38

• Cache size is much smaller than the Main
Memory size

• A block in the Main Memory maps to a block in
the Cache

• Many-to-One Mapping

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

1st

2nd

32nd

Reality: Cache Block / Cache Line

7/38

Direct Mapping

7 4 16-bit Main Memory address

Cache
tag

Cache
Block No

Byte Address
within block (4-bit)

5

12-bit Main Memory
Block number/ address

• 24 = 16 bytes in a block

• 27 = 128 Cache blocks

• 2(7+5) = 4096 main memory blocks

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

1st

2nd

32nd

• Block j of main memory maps to block (j mod 128) of Cache (same colour in figure)

• Cache hit occurs if tag matches desired address

Direct Mapping

9/38

7 4 16-bit Main Memory address

Cache
tag

Cache
Block No

Byte Address
within block (4-bit)

5

12-bit Main Memory
Block number/ address

• 24 = 16 bytes in a block

• 27 = 128 Cache blocks

• 2(7+5) = 4096 main memory blocks

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

1st

2nd

32nd

• Block j of main memory maps to block (j mod 128) of Cache (same colour in figure)

• Cache hit occurs if tag matches desired address

Direct Mapping

9/38

Memory address divided into 3 fields

• Main Memory Block number determines position of block in cache

• Tag used to keep track of which block is in cache (as many MM blocks can map to
same position in cache)

• The last bits in the address selects target word in the block

Example: given an address (t,b,w) (16-bit)

1 See if it is already in cache by comparing t with the tag in block b

2 If not, cache miss! Replace the current block at b with a new one from memory block
(t,b) (12-bit)

Direct Mapping

10/38

7 4 16-bit Main Memory address

Cache
tag

Cache
Block No

Byte Address
within block (4-bit)

5

12-bit Main Memory
Block number/ address

1 CPU is looking for [A7B4] MAR = 1010011110110100

2 Go to cache block 1111011, see if the tag is 10100

3 If YES, cache hit!

4 Otherwise, get the block into cache row 1111011

Direct Mapping Example 1

11/38

Main Memory
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

00
01
10
11

Cache

Tag DataValidIndex

Direct Mapping Example 2

12/38

00
01
10
11

Cache

Main Memory

Tag DataValid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Index

Direct Mapping Example 2

12/38

Question: Direct Mapping Cache Hit Rate

Consider a 4-block empty Cache, and all blocks initially marked as not valid. Given the
main memory word addresses “0 1 2 3 4 3 4 15”, calculate Cache hit rate.

00
01
10
11

Cache

Tag DataValidIndex

13/38

0 1 2 3

4 3 4 15

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

● 8 requests, 6 misses

14/38

• One word blocks, cache size = 1K words (or 4KB)

• What kind of locality are we taking advantage of?

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

20

Data

32

Hit

Example 3: MIPS

15/38

• Four words/block, cache size = 1K words

• What kind of locality are we taking advantage of?

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte
offset

20

20Tag

Hit Data

32

Block offset

Example 4: MIPS w. Multiword Block

16/38

Question: Multiword Direct Mapping Cache Hit Rate

Consider a 2-block empty Cache, and each block is with 2-words. All blocks initially
marked as not valid. Given the main memory word addresses “0 1 2 3 4 3 4 15”,
calculate Cache hit rate.

Cache

Tag DataIndex
00
01

17/38

0 1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss
00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

● 8 requests, 4 misses

18/38

The number of bits includes both the storage for data and for the tags
• For a direct mapped cache with 2n blocks, n bits are used for the index

• For a block size of 2m words (2m+2 bytes), m bits are used to address the word within
the block

• 2 bits are used to address the byte within the word

Size of the tag field?
32 − (n + m + 2)

Total number of bits in a direct-mapped cache
2n × (block size + tag field size + valid field size)

Cache Field Sizes

19/38

The number of bits includes both the storage for data and for the tags
• For a direct mapped cache with 2n blocks, n bits are used for the index

• For a block size of 2m words (2m+2 bytes), m bits are used to address the word within
the block

• 2 bits are used to address the byte within the word

Size of the tag field?
32 − (n + m + 2)

Total number of bits in a direct-mapped cache
2n × (block size + tag field size + valid field size)

Cache Field Sizes

19/38

The number of bits includes both the storage for data and for the tags
• For a direct mapped cache with 2n blocks, n bits are used for the index

• For a block size of 2m words (2m+2 bytes), m bits are used to address the word within
the block

• 2 bits are used to address the byte within the word

Size of the tag field?
32 − (n + m + 2)

Total number of bits in a direct-mapped cache
2n × (block size + tag field size + valid field size)

Cache Field Sizes

19/38

Question: Bit number in a Cache
How many total bits are required for a direct mapped cache with 16KB of data and 4-word
blocks assuming a 32-bit address?

20/38

Associative Mapping

412

16-bit Main Memory address

Tag Byte

Main Memory

Block 0

Block 1

Block i

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

• An MM block can be in arbitrary Cache block location

• In this example, all 128 tag entries must be compared with the address Tag in parallel
(by hardware)

Associative Mapping

22/38

412

16-bit Main Memory address

Tag Byte

1 CPU is looking for [A7B4] MAR = 1010011110110100

2 See if the tag 101001111011 matches one of the 128 cache tags

3 If YES, cache hit!

4 Otherwise, get the block into BINGO cache row

Associative Mapping Example

23/38

16-bit Main Memory address

6 6 4

Tag
Set

Number Byte

Main Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

Example: 2-way set associative• Combination of direct and associative

• (j mod 64) derives the Set Number

• A cache with k-blocks per set is called a k-way set associative cache.

Set Associative Mapping

24/38

16-bit Main Memory address

6 6 4

Tag
Set

Number Byte

E.g. 2-Way Set Associative:

1 CPU is looking for [A7B4] MAR = 1010011110110100

2 Go to cache Set 111011 (5910)
• Block 1110110 (11810)
• Block 1110111 (11910)

3 See if ONE of the TWO tags in the Set 111011 is 101001

4 If YES, cache hit!

5 Get the block into BINGO cache row

Set Associative Mapping Example 1

25/38

0

Cache

Main Memory

Tag DataV

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1
0
1

Way

0

1

Set Associative Mapping Example 2

26/38

Question: Direct Mapping v.s. 2-Way Set Associate

Consider the following two empty caches, calculate Cache hit rates for the reference word
addresses: “0 4 0 4 0 4 0 4”

00
01
10
11

Cache

Tag DataValidIndex

(a)

Tag DataSet
Cache

0
1

0
1

(b)

(a) Direct Mapping; (b) 2-Way Set Associative.

27/38

• 28 = 256 sets each with four ways (each with one block).

• four tags in the set are compared in parallel.
31 30 . . . 11 10 9 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

Set Associative Mapping Example 3: MIPS

28/38

For a fixed size cache:

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

Range of Set Associative Caches

29/38

Replacement

• I$ and D$

• Read hit: what we want!

• Read miss: stall the pipeline, fetch the block from the next level in the memory
hierarchy, install it in the cache and send the requested word to the processor, then let
the pipeline resume.

Handling Cache Read

31/38

Only D$

Case 1: Write-Through

• Cache and memory to be consistent

• always write the data into both the cache block and the next level in the memory
hierarchy

• Speed-up: use write buffer and stall only when buffer is full

Case 2: Write-Back

• Write the data only into the cache block

• Write to memory hierarchy when that cache block is “evicted”

• Need a dirty bit for each data cache block

Handling Cache Write Hits

32/38

Case 1: Write-Through caches with a write buffer

• No-write allocate1

• skip cache write (but must invalidate that cache block since it now holds stale data)

• just write the word to the write buffer (and eventually to the next memory level)

• no need to stall if the write buffer isn’t full

Case 2: Write-Back caches

• Write allocate2

• Just write the word into the cache updating both the tag and data

• no need to stall

1The block is modified in the main memory and not loaded into the cache.
2The block is loaded on a write miss, followed by the write-hit action.

Handling Cache Write Misses

33/38

Write-Through Cache with No-Write Allocation

34/38

Write-Back Cache with Write Allocation

35/38

Direct Mapping
• Position of each block fixed

• Whenever replacement is needed (i.e. cache miss → new block to load), the choice is
obvious and thus no “replacement algorithm” is needed

Associative and Set Associative
• Need to decide which block to replace

• Keep/retain ones likely to be used in near future again

Replacement Algorithms

36/38

Strategy 1: Least Recently Used (LRU)

• e.g. for a 4-block/set cache, use a log2 4 = 2 bit counter for each block

• Reset the counter to 0 whenever the block is accessed

• counters of other blocks in the same set should be incremented

• On cache miss, replace/ uncache a block with counter reaching 3

Strategy 2: Random Replacement

• Choose random block

• ,Easier to implement at high speed

Associative & Set Associative Replacement

37/38

Strategy 1: Least Recently Used (LRU)

• e.g. for a 4-block/set cache, use a log2 4 = 2 bit counter for each block

• Reset the counter to 0 whenever the block is accessed

• counters of other blocks in the same set should be incremented

• On cache miss, replace/ uncache a block with counter reaching 3

Strategy 2: Random Replacement

• Choose random block

• ,Easier to implement at high speed

Associative & Set Associative Replacement

37/38

• Cache Organizations:
Direct, Associative, Set-Associative

• Cache Replacement Algorithms:
Random, Least Recently Used

• Cache Hit and Miss Penalty

Conclusion

38/38

	Main Talk
	Introduction
	Direct Mapping
	Associative Mapping
	Replacement
	Conclusion

