CENG3420 Homework 1

Due: Feb. 15, 2023

Solutions

All solutions should be submitted to the blackboard in the format of PDF/MS Word.
Q1 (10\%) This is a question about integrated circuit cost. Assume that a wafer contains 4096 dies and a die has 0.125 defects on average, please answer the following sub-questions.

1. Calculate the yield of this wafer. (5%)
2. Assume that you wanted to spend 8 millions HKD on manufacturing, how much money can you save for manufacturing the same number of dies if the average defects of a die can be reduced to 0.1 ? (5%)

A1 These are suggested solutions.
1.

$$
\begin{equation*}
\text { Yield }=\frac{1}{\left(1+\frac{\text { Defects per area } \times \text { Die area }}{2}\right)^{2}} \tag{1}
\end{equation*}
$$

We have known that a die has 0.125 defects on average. Thus, Defects per area \times Die area $=0.125$ and Yield $=\frac{1}{\left(1+\frac{0.125}{2}\right)^{2}}=0.8858$.
2. Before optimization,

$$
\begin{equation*}
\text { Cost per die }=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times \text { Yield }}=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times 0.8858} . \tag{2}
\end{equation*}
$$

After optimization,

$$
\begin{gather*}
\text { Yield }=\frac{1}{\left(1+\frac{\text { Defects per area } \times \text { Die area }}{2}\right)^{2}}=\frac{1}{\left(1+\frac{0.1}{2}\right)^{2}}=0.9070 . \tag{3}\\
\text { Cost per die }=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times \text { Yield }}=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times 0.9070} . \tag{4}
\end{gather*}
$$

The saved money is $8 M *\left(\frac{0.9070}{0.8858}-1\right)=0.19 M$. You can save 190k HKD.

Q2 (5\%) Sort the computational performance of the following computers (from low to high):

1. Embedded computer
2. Personal computer
3. Mobile phone
4. Quad-CPU Server
5. Warehouse scale computer

A2 $(1)<(3)<(2)<(4)<(5)$

Q3 (5\%) Suppose we developed a new processor that has 75\% of the capacitive load of the older processor. Further, it can reduce voltage 15% compared to previous generation, which results in a 15% shrink in frequency. What is the impact on dynamic power? Give the ratio of $\frac{\text { Power }_{\text {new }}}{\text { Power }_{\text {old }}}$.

A3 0.4606

$$
\begin{equation*}
\text { Power }=\frac{1}{2} \times \alpha \times \text { Capacitive load } \times \text { Voltage }^{2} \times \text { Frequency switched }^{2} \tag{5}
\end{equation*}
$$

The power ratio between the new one and the old one is $0.75 \times 0.85^{2} \times 0.85=0.4606$.
Q4 (20\%) We have an int (32 bits) array named arr0. The pointer of arr0's first element stored in register a1. Please answer the following questions.

1. How to put the fourth element of arro to register t1? (5\%)
2. How to calculate $t 1+16$? Please store the result in register $t 2(5 \%)$
3. Find an efficient way to calculate $t 2 / 16$ and $t 2 \% 16$. Please store the results in $t 3$ and $t 4$, respectively. Note that / is an integer division and $\%$ is the modulo operation. (hint: using shift and logical operations) (10\%)

A4 1. lw t1, 12(a1)
2. addi $\mathrm{t} 2, \mathrm{t} 1,16$
3. $\mathrm{t} 2 / 16$: srli $\mathrm{t} 3, \mathrm{t} 2,4 ; \quad \mathrm{t} 2 \% 16$: andi $\mathrm{t} 4, \mathrm{t} 2,0 \mathrm{x} 0 \mathrm{~F}$.

Q5 (20\%) We have an int (32 bits) array named arr1. The pointer of arr1's first element stored in register a2. We also have the registers $\mathrm{t} 1=0 \times \mathrm{AAAAAAA}, \mathrm{t} 2=$ $0 x F E D C B A 98$
Please answer the following questions:

1. For the register values shown above, what is the value of $t 3$ for the following sequence of instructions? (5\%)
```
slli t3, t1, 4
srli t3, t3, 4
```

2. What is the value of $t 3$ for the following sequence of instructions? (5\%)
```
slli t3, t2, 3
srai t3, t3, 3
```

3. Write a piece of assembly program to: (10\%)

- Store the result of t 1 \& t 2 to register $\mathrm{t} 4 ;(3 \%)$
- Store $t 4$ to the first element of $\operatorname{arr} 1 ;(3 \%)$
- Store the lowest 8 bits of $t 4$ to the second element of arr1. (4\%)

A5 1. 0x0AAAAAAA
2. 0xFEDCBA98
3. Results:

- and t4, t1, t2
- sw t4, 0(a2)
- sb t4, 4(a2)

Q6 (20\%) Consider the following RISC-V instructions:

```
li t1, 0
li t2, 1
li t3, 1
li t4, 10
LOOP:
beq t1, t4, DONE
add t5, t2, t3
addi t2, t3, 0
addi t3, t5, 0
addi t1, t1, 1
jal x0, LOOP
DONE:
# end of the program
```

1. How many times is the loop executed (between LOOP and DONE)? (5\%)
2. List the value of $t 2$ at each loop iteration. (5%)
3. List the value of $t 3$ at each loop iteration. (5%)
4. What does this program do? (5%)

A6 1. 10
2. $\{1,2,3,5,8,13,21,34,55,89\}$
3. $\{2,3,5,8,13,21,34,55,89,144\}$
4. Calculating the Fibonacci sequence.

Q7 (20\%) Write RISC-V instructions to implement the following functionalities.

1. $t 2=t 1 * 4+7(5 \%)$
2. $t 3=(t 1+t 2) \% 16(5 \%)$
3. $t 2=t 1$! (hint: assume multiply instruction mul is available) (10%)

A7 1.
slli t2, t1, 2
addi $\mathrm{t} 2, \mathrm{t} 2,7$
2.
add $\mathrm{t} 3, \mathrm{t} 1, \mathrm{t} 2$
andi t3, t3, 0x0F
3.
li t3, 0
li t2, 1
LOOP:
beq t1, t3, DONE
mul t2, t2, t1
addi $\mathrm{t} 1, \mathrm{t} 1,-1$
jal x0, LOOP
DONE:

