CENG 3420 Computer Organization & Design

Lecture 08: Floating Numbers

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Textbook: Chapter 3.5)

Spring 2022

Scientific notation: 6.6254×10^{-27}

- A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)
- Scale factors to determine the position of the decimal point (e.g. 10⁻²⁷ indicates position of decimal point and is called the exponent; the **base** is implied)
- Sign bit

• Floating Point Numbers can have multiple forms, e.g.

 $\begin{array}{l} 0.232 \times 10^4 = 2.32 \times 10^3 \\ = 23.2 \times 10^2 \\ = 2320. \times 10^0 \\ = 232000. \times 10^{-2} \end{array}$

- It is desirable for each number to have a unique representation => Normalized Form
- We normalize Mantissa's in the Range [1..*R*), where R is the Base, e.g.:
 - [1..2) for BINARY
 - [1..10) for DECIMAL

32-bit, float in C / C++ / Java

64-bit, float in C / C++ / Java

(c) Double precision

Question:

What is the IEEE single precision number $40C0\ 0000_{16}$ in decimal?

Question:

What is -0.5₁₀ in IEEE single precision binary floating point format?

- Normalized +/- 1.d...d x 2^{exp}
- Denormalized +/-0.d...d x 2^{min_exp} → to represent <u>near-zero</u> numbers e.g. + 0.0000...0000001 x 2⁻¹²⁶ for Single Precision

Exponents of all 0's and all 1's have special meaning

- E=0, M=0 represents 0 (sign bit still used so there is ± 0)
- E=0, M \neq 0 is a denormalized number \pm 0.M \times 2⁻¹²⁷ (smaller than the smallest normalized number)
- E=All 1's, M=0 represents ±Infinity, depending on Sign
- E=All 1's, M≠0 represents NaN

More digits than in the representation: 3 extra bits of less significance

• Guard bits, Round bit, and Sticky bit (GRS)

(a) guard and round bits are just 2 extra bits of precision that are used in calculations.

mantissa from representation, 1100000100 must be shifted by 8 places (to align radix points)

		g	r	S
Before first shift:	1.1100000100	0	0	0
After 1 shift:	0.1110000010	0	0	0
After 2 shifts:	0.0111000001	0	0	0
After 3 shifts:	0.0011100000	1	0	0
After 4 shifts:	0.0001110000	0	1	0
After 5 shifts:	0.0000111000	0	0	1
After 6 shifts:	0.0000011100	0	0	1
After 7 shifts:	0.0000001110	0	0	1
After 8 shifts:	0.0000001111	0	0	1

(b) The sticky bit is an indication of what is in lesser significant bits, starts with 0, remains 1 if ever shifted into.

Rounding

Rounding to nearest even

- Round to the nearest representable number
 - 1x...x = More than half way (round up)
 - 0x...x = Less than half way (round down)

Rounding

Rounding to nearest even

• If exactly halfway between (100....), round to representable value with 0 in last significant bit

+, -, x, /, sqrt, remainder, as well as conversion to and from integer are correctly rounded

- As if computed with infinite precision and then rounded
- Transcendental functions (that cannot be computed in a finite number of steps e.g., sine, cosine, logarithmic, , e, etc.) may not be correctly rounded

Exceptions and Status Flags

• Invalid Operation, Overflow, Division by zero, Underflow, Inexact

Floating point numbers can be treated as "integer bit-patterns" for comparisons

- If Exponent is all zeroes, it represents a denormalized, very small and near (or equal to) zero number
- If Exponent is all ones, it represents a very large number and is considered infinity (see next slide.)

Dual Zeroes: +0 (0x0000000) and -0 (0x8000000): they are treated as the same

Other Features

Infinity is like the mathematical one

- Finite / Infinity ightarrow 0
- Infinity \times Infinity \rightarrow Infinity
- Non-zero / $0 \rightarrow \texttt{Infinity}$
- Infinity $\{\text{Finite or Infinity}\} \rightarrow \text{Infinity}$

NaN (Not-a-Number) is produced whenever a limiting value cannot be determined:

- Infinity Infinity \rightarrow NaN
- Infinity / Infinity \rightarrow NaN
- $0 \neq 0 \rightarrow \text{NaN}$
- Infinity imes 0
 ightarrow NaN
- If x is a NaN, $x \neq x$
- Many systems just store the result quietly as a NaN (all 1's in exponent), some systems will signal or raise an exception

- E.g. Find 1st root of a quadratic equation
 - r = (-b + sqrt(b*b 4*a*c)) / (2*a)

 Sparc processor, Solaris, gcc 3.3 (ANSI C),

 Expected Answer
 0.00023025562642476431

 double
 0.00023025562638524986

 float
 0.00024670246057212353

• Problem is that if c is near zero,

 $sqrt(b*b - 4*a*c) \approx b$

• Rule of thumb: use the highest precision which does not give up too much speed

- (a b) is inaccurate when $a \approx b$
- Decimal Examples
 - Using 2 significant digits to compute mean of 5.1 and 5.2 using the formula (a+b) / 2:
 - a + b = 10 (with 2 sig. digits, 10.3 can only be stored as 10) 10 / 2 = 5.0 (the computed mean is less than both numbers!!!)
 - O Using 8 significant digits to compute sum of three numbers:

(11111113 + (-11111111)) + 7.5111111 = 9.5111111

11111113 + ((-11111111) + 7.5111111) = 10.000000

Catastrophic cancellation occurs when

$$\frac{[round(x)"\bullet"round(y)] - round(x \bullet y)}{round(x \bullet y)} | >> \varepsilon_{mach}$$