
CENG 3420
Computer Organization & Design

Lecture 08: Floating Numbers

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapter 3.5)

Spring 2022

Scientific notation: 6.6254× 10−27

• A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)

• Scale factors to determine the position of the decimal point (e.g. 10−27 indicates
position of decimal point and is called the exponent; the base is implied)

• Sign bit

Floating Point Number

2/16

• Floating Point Numbers can have multiple forms, e.g.

0.232× 104 = 2.32× 103

= 23.2× 102

= 2320.× 100

= 232000.× 10−2

• It is desirable for each number to have a unique representation => Normalized Form

• We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

• [1..2) for BINARY
• [1..10) for DECIMAL

Normalized Form

3/16

32-bit, float in C / C++ / Java

Sign of
number :

32 bits

mantissa fraction
23-bit

representation
excess-127
exponent in
8-bit signed

Value represented

0 0 1 0 1 0 . . . 00 0 0 1 0 1 0 0 0

S M

Value represented

(a) Single precision

(b) Example of a single-precision number

E¢

+

+ 1.001010 … 0 2
– 87

x=

1. M 2
E ¢ – 127

x±=

0 signifies
–1 signifies

00101000 à 40

40 – 127 = – 87

IEEE Standard 754 Single Precision

4/16

64-bit, float in C / C++ / Java

52-bit
mantissa fraction

11-bit excess-1023
exponent

64 bits

Sign

S M

(c) Double precision

Value represented 1. M 2
E ¢ – 1023

x±=

E ¢

IEEE Standard 754 Double Precision

5/16

Question:
What is the IEEE single precision number 40C0 000016 in decimal?

6/16

Question:
What is -0.510 in IEEE single precision binary floating point format?

7/16

Format # bits # significant bits macheps # exponent bits exponent range
----------- --------- -------------------------- ---------------- ----------------------- ------------------------------
Single 32 1+23 2-24 (~10-7) 8 2-126 – 2+127 (~10 ±38)
Double 64 1+52 2-53 (~10-16) 11 2-1022 – 2+1023 (~10 ±308)
Double Extended >=80 >=64 <=2-64(~10-19) >=15 2-16382 – 2+16383 (~10 ±4932)
(Double Extended is 80 bits on all Intel machines)
macheps = Machine Epsilon = = 2 – (# significand bits)

l Normalized +/– 1.d…d x 2exp

l Denormalized +/– 0.d…d x 2min_exp à to represent near-zero numbers
e.g. + 0.0000…0000001 x 2-126 for Single Precision

mache

Ref: IEEE Standard 754 Numbers

8/16

Exponents of all 0’s and all 1’s have special meaning

• E=0, M=0 represents 0 (sign bit still used so there is ±0)

• E=0, M6=0 is a denormalized number ±0.M ×2−127 (smaller than the smallest
normalized number)

• E=All 1’s, M=0 represents ±Infinity, depending on Sign

• E=All 1’s, M6=0 represents NaN

Special Values

9/16

More digits than in the representation: 3 extra bits of less significance
• Guard bits, Round bit, and Sticky bit (GRS)

(a) guard and round bits are just 2 extra bits of
precision that are used in calculations.

(b) The sticky bit is an indication of what is in
lesser significant bits, starts with 0, remains 1 if
ever shifted into.

Rounding

10/16

Rounding to nearest even
• Round to the nearest representable number

• 1x...x = More than half way (round up)
• 0x...x = Less than half way (round down)

Rounding

11/16

Rounding to nearest even
• If exactly halfway between (100....), round to representable value with 0 in last

significant bit

Rounding

12/16

+, -, x, /, sqrt, remainder, as well as conversion to and from integer are correctly
rounded
• As if computed with infinite precision and then rounded

• Transcendental functions (that cannot be computed in a finite number of steps e.g.,
sine, cosine, logarithmic, , e, etc.) may not be correctly rounded

Exceptions and Status Flags
• Invalid Operation, Overflow, Division by zero, Underflow, Inexact

Floating point numbers can be treated as “integer bit-patterns” for comparisons
• If Exponent is all zeroes, it represents a denormalized, very small and near (or equal

to) zero number

• If Exponent is all ones, it represents a very large number and is considered infinity
(see next slide.)

Dual Zeroes: +0 (0x00000000) and -0 (0x80000000): they are treated as the same

Other Features

13/16

Infinity is like the mathematical one

• Finite / Infinity→ 0

• Infinity × Infinity→ Infinity

• Non-zero / 0→ Infinity

• Infinity {Finite or Infinity} → Infinity

NaN (Not-a-Number) is produced whenever a limiting value cannot be
determined:

• Infinity - Infinity→ NaN

• Infinity / Infinity→ NaN

• 0 / 0→ NaN

• Infinity × 0→ NaN

• If x is a NaN, x 6= x

• Many systems just store the result quietly as a NaN (all 1’s in exponent), some
systems will signal or raise an exception

Other Features

14/16

• E.g.	Find	1st root	of	a	quadratic	equation
• r	=	(–b	+	sqrt(b*b	– 4*a*c))	/	(2*a)

Sparc processor,	 Solaris,	gcc 3.3	(ANSI	C),	
Expected Answer 0.00023025562642476431
double 0.00023025562638524986
float 0.00024670246057212353

• Problem	is	that	if	c	is	near	zero,

sqrt(b*b	– 4*a*c)	» b

• Rule	of	thumb:	use	the	highest	precision	which	does	not	give	up	too	much	speed

Inaccurate Floating Point Operations

15/16

l (a – b) is inaccurate when a » b
l Decimal Examples

¡ Using 2 significant digits to compute mean of 5.1 and 5.2
using the formula (a+b) / 2:

a + b = 10 (with 2 sig. digits, 10.3 can only be stored as 10)
10 / 2 = 5.0 (the computed mean is less than both numbers!!!)

¡ Using 8 significant digits to compute sum of three numbers:
(11111113 + (–11111111)) + 7.5111111 = 9.5111111

11111113 + ((–11111111) + 7.5111111) = 10.000000

l Catastrophic cancellation occurs when

Catastrophic Cancellation

16/16

	Floating Point Number

