
CENG 3420
Computer Organization & Design

Lecture 07: Arithmetic and Logic Unit – 2

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 3.3 & 3.4)

Spring 2022

Multiplication & Division

• More complicated than addition

• Can be accomplished via shifting and adding

0010 (multiplicand)
x_1011 (multiplier)
0010
0010 (partial	product

0000 array)
0010

00010110 (product)

• Double precision product produced

• More time and more area to compute

Multiplication

3/15

First Version of Multiplication Hardware

4/15

multiplicand

32-bit ALU

multiplier Control

add
shift
right

product

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

Add and Right Shift Multiplier Hardware

5/15

• Multiply (mult and multu) produces a double precision product

mul $rd, $s0, $s1 # hi||lo = $s0 * $s1

0 16 17 0 0 0x18

• Low-order word of the product is left in processor register lo and the high-order
word is left in register hi

• Instructions mfhi rd and mflo rd are provided to move the product to (user
accessible) registers in the register file

• Multiplies are usually done by fast, dedicated hardware and are much more complex
(and slower) than adders

RISC-V Multiply Instruction

6/15

• Division is just a bunch of quotient digit guesses and left shifts and subtracts

dividend
divisor

partial
remainder
array

quotientn
n

remainder
n

0 0 0

0

0

0

Division

7/15

Question: Division
Dividing 1001010 by 1000

8/15

• Divide generates the reminder in hi and the quotient in lo

div $rd, $s0, $s1 # lo = $s0 / $s1
hi = $s0 mod $s1

op rs rt rd shamt funct

• Instructions mflo rd and mfhi rd are provided to move the quotient and
reminder to (user accessible) registers in the register file

• As with multiply, divide ignores overflow so software must determine if the quotient
is too large.

• Software must also check the divisor to avoid division by 0.

RISC-V Divide Instruction

9/15

Shift

• Shifts move all the bits in a word left or right

sll $t2, $s0, 8 #$t2 = $s0 << 8 bits
srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits
sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

• Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit
positions

• Logical shifts fill with zeros, arithmetic left shifts fill with the sign bit

The shift operation is implemented by hardware separate from the ALU

Using a barrel shifter, which would takes lots of gates in discrete logic, but is pretty easy
to implement in VLSI

Shift Operations

11/15

Ai

Ai-1

Bi

Bi-1

Right Leftnop

Bit-Slice i

...

A Simple Shifter

12/15

Control
Shift amount (Sh4Sh3Sh2Sh1Sh0)
Shift direction (left, right)
Shift type (logical, arithmetic)

=

Parallel Programmable Shifters

13/15

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

Sh0 & right

dataini
dataouti

dataini-1

dataini+1

Sh0 & left

!Sh0

Logarithmic Shifter Structure

14/15

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

Sh1 & right

dataini
dataouti

dataini-2

dataini+2

Sh1 & left

!Sh0

Logarithmic Shifter Structure

14/15

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

Logarithmic Shifter Structure

14/15

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

shifts
of 0
or 8
bits

!Sh3Sh3

0,1,2…15
shifts

Logarithmic Shifter Structure

14/15

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

shifts
of 0
or 8
bits

!Sh3Sh3

0,1,2…15
shifts

shifts
of 0
or 16
bits

!Sh4Sh4

0,1,2…31
shifts

Logarithmic Shifter Structure

14/15

Sh1 Sh1 Sh2 Sh2 Sh4 Sh4

A3

A2

A1

A0

B1

B0

B2

B3

Logarithmic Shifter Structure

15/15

	Multiplication & Division
	Shift

