CENG 3420 @

Computer Organization & Design

Lecture 06: Control Instruction

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 2.8 —2.11)

Spring 2022

Overview

@ Introduction

@ Control Instructions

©® Others

@ Summary

2/31

Overview

@ Introduction

3/31

RISC-V Instruction Fields

RISC-V fields are given names to make them easier to refer to

opcode
rsl

rs2

rd
imm

funct

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct? | 152 sl | funct3 ‘ rd | opcode ‘ R-type

\
[imm[11:0] [rsl] funct3] rd [opcode | I-type
[imm[11:5] [rs2 [rsl] funct3] imm[4:0] [opcode | S-type
[Tmm[12] [fmm([105] | 152 [sl [funct3 | imm(&1] [imm[i1] [opcode | B-type
| imm[3L12] I rd [opcode | U-type
[Tmm[20] | Tmm(10:1] [mm[l1]] imm[19:12] | vd [opeode | J-type

6-bits, opcode that specifies the operation

5-bits, register file address of the first source operand
5-bits, register file address of the second source operand
5-bits, register file address of the result’s destination
12-bits / 20-bits, immediate number field

3-bits / 10-bits, function code augmenting the opcode

3/31

The RISC-V ISA

Instruction Categories
® Load and Store instructions

® Bitwise instructions

Arithmetic instructions

Control transfer instructions

® Pseudo instructions

4/31

RISC-V Register File

Register File
32 bits
o : daia * Holds thirty-two 32-bit general purpose registers
S;:tz:::rri Iocatio?‘é o Two read pOI‘tS
write data 72| 2 jgﬁ ® One write port

write control
Registers are
¢ Faster than main memory

® But register files with more locations are slower
* E.g., a 64 word file may be 50% slower than a 32 word file
¢ Read/write port increase impacts speed quadratically

¢ Lasier for a compiler to use
® (AxB) - (C+D) - (E+F) can do multiplies in any order vs. stack

¢ Can hold variables so that code density improves (since register are named with
fewer bits than a memory location)

5/31

Aside: RISC-V Register Convention

Table: Register names and descriptions

Register Names | ABI Names Description
x0 Zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register
x6-7 tl -2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 sl Saved register
x10-11 a0-al Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

6/31

History of RISC-V

| RISC-V Foundation Incorporated | Privileged Architecture V1.10

| Privileged Architecture V1.7 | | RV32E, RVC V1.9 I
| User ISA V2.0 IMAFD | T
SoC
15t Rocket tapeout, EOS14, 45nm |
User ISAV1.0
Raven-1 tapeout (28 nm)
RVC
RISC-V ISA project begins | | First Linux |

>
1 | I I 1 | I I I "

2010 2011 2012 2013 2014 2015 2016 2017 2018 7/31

Overview

@ Control Instructions

8/31

RISC-V Control Flow Instructions

RISC-V conditional branch instructions:

bne s0, sl1, Lbl # go to Lbl if sO0 != sl
beq s0, sl, Lbl # go to Lbl if s0 = sl

Example

if (i==3j) h =1 + 7;
bne s0, sl1, 1Lbll

add s3, s0, sl
Lbll:

¢ Instruction Format (B format)

¢ How is the branch destination address specified ?

8/31

In Support of Branch Instructions

® We have beg, bne, but what about other kinds of branches (e.g., branch-if-less-than)?

¢ For this, we need yet another instruction, s1t

Set on less than instruction:

slt t0, s0, sl # 1f s0 < sl then
t0 = 1 else
t0 = 0

¢ Instruction format (R format or | format)

Alternate versions of s1t

slti t0, s0, 25 # 1if sO < 25 then t0 =1
sltu tO0, s0, sl # 1f s0O < sl then t0 = 1
sltiu t0, s0, 25 # 1f sO < 25 then t0 = 1

9/31

Aside: More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register zero to create other
conditions

¢ less than: blt sl1, s2, Label

slt
bne

t0, sl, s2 # t0 set to 1 if
t0, zero, Label # sl < Ss2

less than or equal to: ble s1, s2, Label
greater than: bgt s1, s2, Label
great than or equal to: bge sl, s2, Label

Such branches are included in the instruction set as pseudo instructions — recognized
(and expanded) by the assembler

10/31

Bounds Check Shortcut

¢ Treating signed numbers as if they were unsigned gives a low cost way of checking if
0 < x < y (index out of bounds for arrays)

t0 = 0 if

sl > t2 (max)
or sl < 0 (min)
go to IOOB if
to = 0

sltu t0, sl1, t2

beq t0, zero, IOOB

H FHR FHR KR K

¢ The key is that negative integers in two’s complement look like large numbers in
unsigned notation.

¢ Thus, an unsigned comparison of x < y also checks if x is negative as well as if x is
less than y.

11/31

Other Control Flow Instructions

¢ RISC-V also has an unconditional branch instruction or jump instruction:

jal zero, label # go to label, label can be an
immediate value

¢ Instruction Format (] Format)

® Jis a pseudo instruction of unconditional jal and it will discard the return address
(e.g., 7 label)

[20-bit address [o0 | oxef |

[imm20 imm10:1 [immt1 | imm1o12 |

pc := pc + sign extended(imm20 << 1)

12/31

[X-2: Branching Far Away

What if the branch destination is further away than can be captured in 12 bits? Re-write
the following codes.

beq s0, sl1, L1

g@fzﬂ%: %

13/31

[X: Compiling a while Loop in C

while (save[i] == k) i1 += 1;

Assume that 1 and k correspond to registers s3 and s5 and the base of the array save is in
s6.

14/31

[X: Compiling a while Loop in C

while (save[i]

) i

Crrrey

in}

S lg

Assume that 1 and k correspond to registers s3 and s5 and the base of the array save is in

sS6.

Loop: sll
add
1w
bne
addi
J

Exit:

tl,
tl,
to,
to,
s3,
Loop

s3,
td,
0(tl
s5,
s3,1

2
s6

)
Exit

S H H W R W K

Temp reg tl = 1 * 4

tl = address of save[i]
Temp reg t0 = save[i]
go to Exit if save[i] != k

i =1+ 1
Jj is a pseudo instruction for jal
go to Loop

Note: left shift s3 to align word address, and later address is increased by 1

14/31

Six Steps in Execution of a Procedure

@ Main routine (caller) places parameters in a place where the procedure (callee) can
access them

® a0 —a7: for argument registers

@ Caller transfers control to the callee

@ Callee acquires the storage resources needed

@ Callee performs the desired task

@ Callee places the result value in a place where the caller can access it
® s0-s11: 12 value registers for result values

® Callee returns control to the caller

® ra: one return address register to return to the point of origin

15/31

Instructions for Accessing Procedures

We have learnt jal, now let’s continue

¢ RISC-V procedure call instruction:

jal ra, label # jump and link,
label can be an immediate value

Saves PC + 4 in register ra to have a link to the next instruction for the procedure
return

Machine format (] format):

Then can do procedure return with a

jalr x0, O(ra) # return

Instruction format (I format)

16/31

Example of Accessing Procedures

¢ For a procedure that computes the GCD of two values i (in t0) and j (in t 1):
gcd (i, 3);

¢ The caller puts the i and j (the parameters values) in a0 and al and issues a

jal ra, gcd # jump to routine gcd

¢ The callee computes the GCD, puts the result in s0, and returns control to the caller
using

gcd: # code to compute gcd

jalr x0, 0(ra) # return

17/31

What if the callee needs to use more registers than allocated to argument and
return values?

high addr

Use a stack: a last-in-first-out queue

One of the general registers, sp, is used to address the stack

“grows” from high address to low address top of stack |«sp

push: add data onto the stack, data on stack at new sp ﬂ

sp = sp — 4

pop: remove data from the stack, data from stack at sp

sp = sp + 4

low addr

18/31

Allocating Space on the

The segment of the stack containing a procedure’s
saved registers and local variables is its procedure
frame (aka activation record)

The frame pointer (£p) points to the first word of the
frame of a procedure - providing a stable “base”
register for the procedure

fp is initialized using sp on a call and sp is restored
using fp on a return

high addr

-fp

Saved return addr

Saved local regs
(if any)

Local arrays &
structures (if
any)

low addr

19/31

Allocating Space on the

¢ Static data segment for constants and other static
variables (e.g., arrays)

¢ Dynamic data segment (aka heap) for structures that
grow and shrink (e.g., linked lists)

¢ Allocate space on the heap withmalloc () and free
it with free () inC

sp

PC

Memory

Ox7ffffffc

0x 1000 8000
0x 10000000

0x 00400000
0x 00000000

20/31

[X-3: Compiling a C Leaf Procedure E@%

Leaf procedures are ones that do not call other procedures. Give the RISC-V assembler
code for the follows.
int leaf_ex (int g, int h, int i, int 3j)
{
int f;
f = (g+h) - (i+3J);
return f;
}

Solution:

21/31

[X-3: Compiling a C Leaf Procedure g«;@%@

Leaf procedures are ones that do not call other procedures. Give the RISC-V assembler
code for the follows.

int leaf_ex (int g, int h, int i, int 3j)
{

int f;

f = (g+h) - (i+73);

return f;

}
Solution:

Suppose g, h,i,andjarein a0, al, a2, a3

leaf_ex: addi sp, sp, -8 # make stack room
sw tl, 4(sp) # save tl on stack
sw t0, 0(sp) # save t0 on stack
add t0, a0, al
add tl, a2, a3

sub s0, t0, t1l

1w t0, O(sp) # restore tO0

1w tl, 4(sp) # restore tl

addi sp, sp, 8 # adjust stack ptr
jalr zero, 0(ra)

21/31

Nested Procedures

® Nested Procedure: call other procedures

¢ What happens to return addresses with nested procedures?

int rt_ 1 (int 1)

{
if (i == 0) return 0;
else return rt_2(i-1);

22/31

Nested procedures (cont.)

caller: jal «rt_1
next:

rt_1: bne a0, zero, to_2
add s0, zero, zero
jalr zero, 0O (ra)
to_2: addi a0, a0, -1
jal ra, rt_2
jalr zero, O(ra)

rt_2:

® On the call to rt_1, the return address (next in the caller routine) gets stored in ra.

Question:

What happens to the value in ra (when a0 != 0) when to_2 makes acall to rt_2?
23/31

Compiling a Recursive Procedure

A procedure for calculating factorial

int fact (int n)

{
if (n < 1) return 1;
else return (n * fact (n-1));

¢ A recursive procedure (one that calls itself!)

fact (0) =1

fact (1) =1 » 1 =1

fact (2) = 2 « 1 « 1 = 2

fact (3) = 3 x 2 % 1 1 =6

fact (4) = 4 « 3 % 2 1 1 = 24

¢ Assume n is passed in a0; result returned in s0

24/31

Compiling a Recursive Procedure (cont.)

fact: addi sp, sp, -8 adjust stack pointer
sSwW ra, 4 (sp) save return address
sw a0, 0 (sp) save argument n

slti t0, a0, 1
beqg t0, zero, L1
addi s0, zero, 1
addi sp, sp, 8
jalr zero, 0O(ra)

Ll: addi a0, a0, -1
jal ra, fact

test for n < 1

if n > 1, go to L1
else return 1 in sO
adjust stack pointer
return to caller

n >= 1, so decrement n
call fact with (n-1)
this is where fact returns
restore argument n
restore return address
adjust stack pointer
s0 = n + fact(n-1)
return to caller

bk_f: 1w a0, 0 (sp)
1w ra, 4 (sp)
addi sp, sp, 8
mul s0, a0, sO
jalr zero, O(ra)

S R R Hh W R Hh W R R W R R R R

Note: bk_ f is carried out when fact is returned.

Question:

Why we don’tload ra, a0 back to registers?
25/31

Overview

©® Others

26/31

Atomic Exchange Support

® Need hardware support for synchronization mechanisms to avoid data races where
the results of the program can change depending on how events happen to occur

¢ Two memory accesses from different threads to the same location, and at least one is
a write

® Atomic exchange (atomic swap): interchanges a value in a register for a value in
memory atomically, i.e., as one operation (instruction)

¢ Implementing an atomic exchange would require both a memory read and a memory
write in a single, uninterruptable instruction.

® An alternative is to have a pair of specially configured instructions

lr.w t1, 0(sl) # Load—Reserved
sc.w t0, 0(sl) # Store—-Conditional

26/31

Automic Exchange with 1r and sc

¢ 1r and sc can construct a lock-free program

¢ 1r.wloads a word from the memory, and registers a reservation set - a set of bytes
that subsumes the bytes in the addressed word

* sc.w conditionally writes a word. The sc.w succeeds only if the reservation is still
valid and the reservation set contains the bytes being written. If the sc . w succeeds,
the instruction writes the word to the memory, and it writes zero to the rd. If the
sc.w fails, the instruction does not write to the memory, and it writes a nonzero
value to rd. bvtes being written.

Example:
At the beginning, a0

saves the memory base address

al saves the expected value
a2 saves another expected value

cas:
lr.w t0, 0(a0) #
bne t0, al, fail #
sc.w a0, a2, 0(a0) #
jalr zero, O0(ra) #
fail:

1i a0, 1 #
jalr zero, 0(ra) #

read the original value

if a mismatch occurs, go to fail
try to update

return

set the fail flag
return

27/31

The C Code Translation Hierarchy

assembly code

assembler

object code | |Iibrary routines

executable

memory

machine code

28/31

Compiler Benefits

¢ Comparing performance for bubble (exchange) sort

* To sort 100,000 words with the array initialized to random values on a Pentium 4
with a 3.06 clock rate, a 533 MHz system bus, with 2 GB of DDR SDRAM, using
Linux version 2.4.20

The un-optimized code has the best CPI', the O1 version has the lowest
instruction count, but the O3 version is the fastest.

gcc opt Relative Clock cycles | Instr count CPI
performance (M) (M)

None 1.00 158,615 114,938 1.38

01 (medium) 2.37 66,990 37,470 1.79

02 (full) 2.38 66,521 39,993 1.66

03 (proc mig) 2.41 65,747 44,993 1.46

'CPI: clock cycles per instruction 29/31

Overview

@ Summary

30/31

Addressing Modes Illustrated

1. Immediate addressing
|immediale| rs1 Ifunct3| rd l op |

2. Register addressing
ifuncl?| rs2] rs1 |func13| rd ‘ op | Registers
Register

3. Base addressing

|immediatel rs1 Ifuncm] rd l op] Memory

| Regw—- [BE halword] Word Doubleword

4. PC-relative addressing

| imm | rs2 | rs1 [funct3|imm| op | Memory

| PC | - Word

30/31

RISC-V Organization So Far

Processor
Memory
Register File
src1 addr—4» srcl 1...1100
2 data
e addr7§’ 32registers
(x0 —x31)
o addr75» - read/write
write data 33, gé—» data /addr yo0
“32bits 32 words
read datg
32
write data 0...1100
32 0...1000
4151617]0...0100
0Lb1]2[3 [0..0000
/ 32 bits word address
(binary)
byte address
(big Endian)

31/31

	Main Talk
	Introduction
	Control Instructions
	Others
	Summary

