
CENG 3420
Computer Organization & Design

Lecture 05: Arithmetic and Logic Unit – 1

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 3.2 & A.5)

Spring 2022

Overview

Address Instruction

Instruction
Memory

Write Data

Write Addr

Read Addr

Read Addr

Register

File ALU
Data
Memory

Address

Write Data

Read DataPC

Read
Data

Read
Data

Abstract Implementation View

3/30

Where we’ve been: abstractions
• Instruction Set Architecture (ISA)

• Assembly and machine language

What’s up ahead: Implementing the ALU architecture

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

Arithmetic

4/30

Where we’ve been: abstractions
• Instruction Set Architecture (ISA)

• Assembly and machine language

What’s up ahead: Implementing the ALU architecture

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

Arithmetic

4/30

• Supports design, documentation, simulation & verification, and synthesis of
hardware

• Allows integrated design at behavioral & structural levels

Review: VHDL

5/30

Basic Structure
• Design entity-architecture descriptions

• Time-based execution (discrete event simulation) model

Design Entity-­Architecture ==
Hardware Component

Entity == External
Characteristics

Architecture (Body) ==
Internal Behavior

or Structure

Review: VHDL (cont.)

6/30

Entity

defines externally visible characteristics

• Ports: channels of communication

• signal names for inputs, outputs, clocks, control

• Generic parameters: define class of components

• timing characteristics, size (fan-in), fan-out

Review: Entity-Architecture Features

7/30

Architecture
defines the internal behavior or structure of the circuit

• Declaration of internal signals

• Description of behavior

• collection of Concurrent Signal Assignment (CSA) statements (indicated by <=);
• can also model temporal behavior with the delay annotation
• one or more processes containing CSAs and (sequential) variable assignment

statements (indicated by :=)

• Description of structure

• interconnections of components; underlying behavioral models of each
component must be specified

Review: Entity-Architecture Features (cont.)

8/30

entity ALU is
port(A, B: in std_logic_vector (31 downto 0);

m: in std_logic_vector (3 downto 0);
result: out std_logic_vector (31 downto 0);
zero: out std_logic;
ovf: out std_logic)

end ALU;

architecture process_behavior of ALU is
. . .
begin

ALU: process(A, B, m)
begin

. . .
result := A + B;
. . .

end process ALU;
end process_behavior;

ALU VHDL Representation

9/30

• Bits are just bits (have no inherent meaning)1

• Binary numbers (base 2) – integers

Of course, it gets more complicated:
• storage locations (e.g., register file words) are finite, so have to worry about overflow

(i.e., when the number is too big to fit into 32 bits)

• have to be able to represent negative numbers, e.g., how do we specify -8 in

addi $sp, $sp, -8 #$sp = $sp - 8

• in real systems have to provide for more than just integers, e.g., fractions and real
numbers (and floating point) and alphanumeric (characters)

1conventions define the relationships between bits and numbers

Machine Number Representation

10/30

32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

What if the bit string represented addresses?
• need operations that also deal with only positive (unsigned) integers

RISC-V Representation

11/30

• Negating a two’s complement number – complement all the bits and then add a 1

• remember: “negate” and “invert” are quite different!

• Converting n-bit numbers into numbers with more than n bits:

• 16-bit immediate gets converted to 32 bits for arithmetic
• sign extend: copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010
1010 -> 1111 1010

• sign extension versus zero extend (lb vs. lbu)

Two’s Complement Operations

12/30

• Must support the Arithmetic/Logic operations of the ISA

RV 32I:
add, sub, mul, mulh, mulhu, mulhsu,
div, divu, rem, li, addi, sll, srl,
sra, or, xor, not, slt, sltu, slli,
srli, srai, andi, ori, xori, slti,
sltiu,

RV 64I:
addw, subw, remu, mulw, divw, divuw,
remw, remuw, addiw, sllw, srlw, sraw,
srliw, sraiw,

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

• With special handling for:

• sign extend: addi, slti, sltiu
• zero extend: andi, xori
• Overflow detected: add, addi, sub

Design the RISC-V Arithmetic Logic Unit (ALU)

13/30

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

R-type:

I-type:

Type op funct

ADDI 001000 xx

ADDIU 001001 xx

SLTI 001010 xx

SLTIU 001011 xx

ANDI 001100 xx

ORI 001101 xx

XORI 001110 xx

LUI 001111 xx

Type op funct

ADD 000000 100000

ADDU 000000 100001

SUB 000000 100010

SUBU 000000 100011

AND 000000 100100

OR 000000 100101

XOR 000000 100110

NOR 000000 100111

Type op funct

000000 101000

000000 101001

SLT 000000 101010

SLTU 000000 101011

000000 101100

RISC-V Arithmetic and Logic Instructions

14/30

Addition Unit

S	=	A		xor		B		xor		carry_in
carry_out		=	A&B		|		A&carry_in		|		B&carry_in

(majority	function)

A B carry_in carry_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1 bit
Full
Adder

A

B
S

carry_in

carry_out

• How can we use it to build a 32-bit adder?

• How can we modify it easily to build an adder/subtractor?

Building a 1-bit Binary Adder

16/30

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

• Just connect the carry-out of the least significant bit FA to the
carry-in of the next least significant bit and connect ...

• Ripple Carry Adder (RCA)

• ,: simple logic, so small (low cost)
• /: slow and lots of glitching (so lots of energy consumption)

Building 32-bit Adder

17/30

Glitch
invalid and unpredicted output that can be read by the next stage and result in a wrong
action

Example: Draw the propagation delay

Glitch

18/30

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Glitch in RCA

19/30

• Critical path of n-bit ripple-carry adder is n × CP

• Design trick: throw hardware at it (Carry Lookahead)

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

But What about Performance?

20/30

l complement all the bits

l add a 1 in the least significant bit

A 0111 -> 0111
B - 0110 -> +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

. .
 .

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001

1001
1

1 0001

A 32-bit Ripple Carry Adder/Subtractor

21/30

Gate library: inverters, 2-input NANDs, or-and-inverters

architecture concurrent_behavior of full_adder is

signal t1, t2, t3, t4, t5: std_logic;

begin

t1 <= not A after 1 ns;

t2 <= not cin after 1 ns;

t4 <= not((A or cin) and B) after 2 ns;

t3 <= not((t1 or t2) and (A or cin)) after 2 ns;

t5 <= t3 nand B after 2 ns;

S <= not((B or t3) and t5) after 2 ns;

cout <= not((t1 or t2) and t4) after 2 ns;

end concurrent_behavior;

Minimal Implementation of a Full Adder

22/30

• Also need to support the logic operations (and, nor, or, xor)

• Bit wise operations (no carry operation involved)
• Need a logic gate for each function and a mux to choose the output

• Also need to support the set-on-less-than instruction (slt)

• Uses subtraction to determine if (a − b) < 0 (implies a < b)

• Also need to support test for equality (bne, beq)

• Again use subtraction: (a − b) = 0 implies a = b

• Also need to add overflow detection hardware

• overflow detection enabled only for add, addi, sub

• Immediates are sign extended outside the ALU with wiring (i.e., no logic needed)

Tailoring the ALU to the ISA

23/30

1-bit
FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

A Simple ALU Cell with Logic Op Support

24/30

1-bit
FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

Modifying the ALU Cell for slt

A Simple ALU Cell with Logic Op Support

24/30

• First perform a subtraction

• Make the result 1 if the subtraction yields a negative
result

• Make the result 0 if the subtraction yields a positive
result

• Tie the most significant sum bit (sign bit) to the low
order less input

0

0
set

A1

B1

A0

B0

A31

B31

+

result1

less

+

result0

less

+

result31

less

. . .

Modifying the ALU for slt

25/30

Overflow occurs when the result is too large to represent in the number of bits
allocated

• adding two positives yields a negative

• or, adding two negatives gives a positive

• or, subtract a negative from a positive gives a negative

• or, subtract a positive from a negative gives a positive

Question: prove you can detect overflow by:

Carry into MSB xor Carry out of MSB

1

1

0

1

1

0

0 1 1 1

0 0 1 1+

7

3

0

1

– 6 1 10

1

1 1 0 0

1 0 1 1+

–4

– 5

71

0

Overflow Detection

26/30

• Modify the most significant cell to
determine overflow output setting

• Enable overflow bit setting for signed
arithmetic (add, addi, sub)

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31
result31

less

. . .
0

0
set

zero

. . .

add/subt op

overflow

Modifying the ALU for Overflow

27/30

• On overflow, an exception (interrupt) occurs

• Control jumps to predefined address for exception

• Interrupted address (address of instruction causing the overflow) is saved for
possible resumption

• Don’t always want to detect (interrupt on) overflow

Overflow Detection and Effects

28/30

Category Instr Op Code Example Meaning
Arithmetic
(R & I
format)

add unsigned 0 and 21 addu $s1, $s2, $s3 $s1 = $s2 + $s3
sub unsigned 0 and 23 subu $s1, $s2, $s3 $s1 = $s2 - $s3
add
imm.unsigned

9 addiu $s1, $s2, 6 $s1 = $s2 + 6

Data
Transfer

ld byte
unsigned

24 lbu $s1, 20($s2) $s1 = Mem($s2+20)

ld half unsigned 25 lhu $s1, 20($s2) $s1 = Mem($s2+20)
Cond.
Branch
(I & R
format)

set on less than
unsigned

0 and 2b sltu $s1, $s2, $s3 if ($s2<$s3) $s1=1
else $s1=0

set on less than
imm unsigned

b sltiu $s1, $s2, 6 if ($s2<6) $s1=1
else $s1=0

• Sign extend: addi, addiu, slti

• Zero extend: andi, ori, xori

• Overflow detected: add, addi, sub

New Instructions

29/30

http://csillustrated.berkeley.edu/PDFs/posters/
integer-representations-1-history-poster.pdf

30/30

http://csillustrated.berkeley.edu/PDFs/posters/integer-representations-1-history-poster.pdf
http://csillustrated.berkeley.edu/PDFs/posters/integer-representations-1-history-poster.pdf

	Overview
	Addition Unit

