
CENG 3420
Computer Organization & Design

Lecture 01: Introduction

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 1.3 & 1.4)

Spring 2022



Instructor:
• Bei Yu (byu@cse.cuhk.edu.hk)

• Office: SHB 907

• Office Hrs: H14:30–16:30

Tutors:
• Chen Bai (cbai@cse.cuhk.edu.hk)

• Wenqian Zhao (wqzhao@cse.cuhk.edu.hk)

• Hongduo Liu (hdliu21@cse.cuhk.edu.hk)

• Ziyi Wang (ziyiwang21@cse.cuhk.edu.hk)

• Zhisheng Zhong (zszhong@link.cuhk.edu.hk )

Course Administration

2/19

mailto:byu@cse.cuhk.edu.hk
mailto:cbai@cse.cuhk.edu.hk
mailto:wqzhao@cse.cuhk.edu.hk
mailto:hdliu21@cse.cuhk.edu.hk
mailto:ziyiwang21@cse.cuhk.edu.hk
mailto:zszhong@link.cuhk.edu.hk 


Grade Determinates
5% Attendance

15% Homework
15% Midterm (Mar. 18)
25% Three Labs (Individual project)
40% Final Exam

• Late submission per day is subject to 10% of penalty.

• A student must gain at least 50% of the full marks in order to pass the course.

• A student must attend at least 80% of lectures in order to gain all class attendance
credits.

Grading Information

3/19



Textbook:

• Computer Organization and Design, RISC-V Edition

• Soft copy, amazon.cn, or amazon.com

Manuals:
• LC-3 Instruction Set Architecture (ISA)

• Lab tutorials (slides)

Slides:
• On the course web page before lecture

• Summary may be uploaded afterwards

General References

4/19



• Introduction to the major components of a computer system, how they function
together in executing a program.

• Introduction to CPU datapath and control unit design

• Introduction to techniques to improve performance and energy-efficiency of
computer systems

• Introduction to multiprocessor architecture

Philosophy

To learn what determines the capabilities and performance of computer systems and to
understand the interactions between the computer’s architecture and its software so that
future software designers (compiler writers, operating system designers, database
programmers, application programmers, ...) can achieve the best cost-performance
trade-offs and so that future architects understand the effects of their design choices on
software.

Course Content

5/19



• Introduction to the major components of a computer system, how they function
together in executing a program.

• Introduction to CPU datapath and control unit design

• Introduction to techniques to improve performance and energy-efficiency of
computer systems

• Introduction to multiprocessor architecture

Philosophy

To learn what determines the capabilities and performance of computer systems and to
understand the interactions between the computer’s architecture and its software so that
future software designers (compiler writers, operating system designers, database
programmers, application programmers, ...) can achieve the best cost-performance
trade-offs and so that future architects understand the effects of their design choices on
software.

Course Content

5/19



• You want to call yourself a “computer scientist/engineer”

• You want to build HW/SW people use (so need performance/power)

• You need to make a purchasing decision or offer “expert” advice

Both hardware and software affect performance/power
• Algorithm determines number of source-level statements

• Language/compiler/architecture determine the number of machine-level
instructions

• Processor/memory determine how fast and how power-hungry machine-level
instructions are executed

Why Learn This Stuff?

6/19



• Basic logic design & machine organization

• logical minimization, FSMs, component design
• processor, memory, I/O

• Create, run, debug programs in an assembly language

• Will be introduced in tutorial

• Create, compile, and run C/C++ programs

• Create, organize, and edit files and run programs on Unix/Linux

What You Should Already Know

7/19



• This course is all about how computers work

• But what do we mean by a computer?

• Different types: embedded, laptop, desktop, server
• Different uses: automobiles, graphics, finance, genomics ...
• Different manufacturers: Intel, Apple, IBM, Sony, Oracle ...
• Different underlying technologies and different costs

• Analogy: Consider a course on “automotive vehicles”

• Many similarities from vehicle to vehicle (e.g., wheels)
• Huge differences from vehicle to vehicle (e.g., gas vs. electric)

• Best way to learn:

• Focus on a specific instance and learn how it works
• While learning general principles and historical perspectives

Computer Organization and Design

8/19



Components

• processor (datapath, control)

• input (mouse, keyboard)

• output (display, printer)

• memory (cache, main memory, disk drive, CD/DVD)

• network

Our primary focus: the processor (datapath and control) and its interaction with
memory systems

• Implemented using tens/hundreds of millions of transistors

• Impossible to understand by looking at each transistor

• We need abstraction!

What is a Computer?

9/19



Major Components of a Computer

10/19



• Capabilities and performance characteristics of the principal Functional Units (FUs).
(e.g., register file, ALU, multiplexors, memories, ...)

• The ways those FUs are interconnected (e.g., buses)

• Logic and means by which information flow between FUs is controlled

• The machine’s Instruction Set Architecture (ISA)

• Register Transfer Level (RTL) machine description

Machine Organization

11/19



Control needs to have circuitry to
• Decide which is the next instruction and input it from memory

• Decode the instruction

• Issue signals that control the way information flows between datapath components

• Control what operations the datapath’s functional units perform

Datapath needs to have circuitry to
• Execute instructions - functional units (e.g., adder) and storage locations (e.g.,

register file)

• Interconnect the functional units so that the instructions can be executed as required

• Load data from and store data to memory

Processor Organization

12/19



Systems software

Applications software

Hardware

Operating System
• Supervising program that interfaces the user’s program with the hardware (e.g.,

Linux, iOS, Windows)

• Handles basic input and output operations

• Allocates storage and memory

• Provides for protected sharing among multiple applications

Compiler
• Translate programs written in a high-level language (e.g., C, Java) into instructions

that the hardware can execute

System Software

13/19



• Allow the programmer to think in a more natural language and for their intended
use (Fortran for scientific computation, Cobol for business programming, Lisp for
symbol manipulation, Java for web programming, ...)

• Improve programmer productivity – more understandable code that is easier to
debug and validate

• Improve program maintainability

• Allow programs to be independent of the computer on which they are developed
(compilers and assemblers can translate high-level language programs to the binary
instructions of any machine)

• Emergence of optimizing compilers that produce very efficient assembly code
optimized for the target machine

As a result, very little programming is done today at the assembler level

Advantages of Higher-Level Languages ?

14/19



Instruction Set Architecture (ISA)
The interface description separating the software and hardware

software

hardware

instruction set architecture

15/19



• ISA, or simply architecture – the abstract interface between the hardware and the
lowest level software that includes all the information necessary to write a machine
language program, including instructions, registers, memory access, I/O, ...

• Enables implementations of varying cost and performance to run identical software

• The combination of the basic instruction set (the ISA) and the operating system
interface is called the application binary interface (ABI)

• ABI: The user portion of the instruction set plus the operating system interfaces used
by application programmers. Defines a standard for binary portability across
computers.

Instruction Set Architecture (ISA)

16/19



Instruction Categories
• Load and Store instructions

• Bitwise instructions

• Arithmetic instructions

• Control transfer instructions

• Pseudo instructions

4 Base Instruction Formats: all 32 bits wide

The RISC-V ISA I

17/19



Table: Register names and descriptions

Register Names ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register

x6-7 t1 - t2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 s1 Saved register

x10-11 a0-a1 Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

The RISC-V ISA II

18/19



I/O systemProcessor

Compiler

Operating
System

Applications

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Memory 
system

Datapath & Control 

network

• Coordination of many levels of abstraction

• Under a rapidly changing set of forces

• Design, measurement, and evaluation

How Do the Pieces Fit Together?

19/19



I/O systemProcessor

Compiler

Operating
System

Applications

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

Memory 
system

Datapath & Control 

network

CSCI3150
CSCI3120

CENG2400&CENG3420

CENG3470
ENGG2020

CENG4430

• Coordination of many levels of abstraction

• Under a rapidly changing set of forces

• Design, measurement, and evaluation

How Do the Pieces Fit Together?

19/19


	Course Information
	Organization – First Glance
	Summary

