
CENG 3420
Computer Organization & Design

HW2 Review

ZHAO Wenqian
CSE Department, CUHK
wqzhao@cse.cuhk.edu.hk

Spring 2022



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

2/19



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

3/19



1 What is 5ED4 - 07A4 when these values represent unsigned 16-bit hexadecimal
numbers? The result should be written in hexadecimal. Show your work.

2 What is 5ED4 - 07A4 when these values represent signed 16-bit hexadecimal
numbers stored in sign-magnitude format? The result should be written in
hexadecimal. Show your work.

Q1 Description

3/19



1 5730

2 5730, if you work with signed numbers, they are represented by the first (most
significant) bit being one. That is to say that if you work with a number of bits that is
a multiple of four, then a number is negative if the first hexadecimal digit is
8,9,A,B,C,D,E or F.

Solution

4/19



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

5/19



Read through the multiplication/devision algorithm:

1 Write down the step by step procedure to calculate 7 × 3 or 0111 × 0011. Use
Multiplier0 to indicate the least significant bit of the multiplier.

2 Write down the step by step procedure to calculate 7 ÷ 2 or 0111 ÷ 0010.

Q2 Description

5/19



The left figure is the multiplication algorithm for reference. The right figure is the division
algorithm.

Q2 Description

6/19



Steps for multiplication

Solution 2.1

7/19



Steps for division

Solution 2.2

8/19



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

9/19



EEE 754-2008 contains a half precision that is only 16 bits wide. The leftmost bit is
still the sign bit, the exponent is 5 bits wide and has a bias of 15, and the mantissa
is 10 bits long. A hidden 1 is assumed. Write down the bit pattern to represent
−1.5625 × 10 − 1 assuming a version of this format, which uses an excess-16
format to store the exponent.

Q3 Description

9/19



1 −1.5625 × 10−1 = −0.15625 × 100

2 = −0.00101 × 20

3 move the binary point three to the right, = −1.01 × 2−3

4 exponent = −3 = −3 + 15 = 12, fraction −0.0100000000

5 answer: 1011000100000000

Solution of Q3

10/19



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

11/19



Calculate the sum of 2.6125 × 101 and 4.150390625 × 10−1 by hand, assuming A
and B are stored in the 16-bit half precision described in Q3. Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps. (To
perform addition of 2 number, firstly shift mantissa right to make sure the
exponent are matched)

Q4 Description

11/19



Solution of Q4

12/19



Solution of Q4

13/19



1 2.6125 × 101 + 4.150390625 × 10−1

2 2.6125 × 101 = 26.125 = 11010.001 = 1.1010001000 × 24

3 4.150390625 × 10−1 = 0.4150390625 = 0.011010100111 = 1.1010100111 × 2−2

4 Shift binary point six to the left to align exponents,

5

6 In this case the extra bit (G,R,S) is more than half of the least signifi cant bit (0).

7 Thus, the value is rounded up.

8 1.1010100011 × 24 = 11010.100011 × 20 = 26.546875 = 2.6546875 × 101

Solution of Q4

14/19



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

15/19



a = b + e;
c = b + f;

Here is the generated RISC-V code for this segment, assuming all variables are in
memory and are addressable as offsets from x31:

ld x1, 0(x31) // Load b
ld x2, 8(x31) // Load e
add x3,x1,x2 // b + e
sd x3, 24(x31) // Store a
ld x4, 16(x31) // Load f
add x5,x1,x4 // b + f
sd x5, 32(x31) // Store c

Find the hazards in the preceding code segment and reorder the instructions to
avoid any pipeline stalls.

Q5 Description

15/19



Both add instructions have a hazard because of their respective dependence on the
previous ld instruction. Notice that forwarding eliminates several other potential
hazards, including the dependence of the first add on the first ld and any hazards
for store instructions. Moving up the third ld instruction to become the third
instruction eliminates both hazards:

1 ld x1, 0(x31) // Load b

2 ld x2, 8(x31) // Load e

3 ld x4, 16(x31) // Load f

4 add x3,x1,x2 // b + e

5 sd x3, 24(x31) // Store a

6 add x5,x1,x4 // b + f

7 sd x5, 32(x31) // Store c

Solution of Q5

16/19



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

Overview

17/19



Consider the following instruction:
Instruction: and rd, rs1, rs2
Interpretation: Reg[rd] = Reg[rs1] AND Reg[rs2]

1 What are the values of control signals generated by the control in figure 2 for this
instruction?

2 Which resources (blocks) produce no output for this instruction? Which resources
produce output that is not used?

Q6 Description

17/19



The datapath for the memory instructions and the R-type instructions.

Q6 Description

18/19



1 Mathematically, the MemRead control wire is a “don’t care": the instruction will run
correctly regardless of the chosen value. Practically, however, MemRead should be
set to false to prevent causing a segment fault or cache miss.

RegWrite ALUSrc ALUoperation MemWrite MemRead MemToReg

true 0 "and" false false 0

2 Data memory; MemToReg mux.

Solution of Q6

19/19


	Main Talk
	Q1
	Q2
	Q3
	Q4
	Q5
	Q6


