CENG3420
Lab 1-1: RISC-V Assembly Language Programing

Chen BAI

Department of Computer Science and Engineering
The Chinese University of Hong Kong

cbai@cse.cuhk.edu.hk

Spring 2021

T LXE

The Chinese University of Hong Kong

1/33

mailto:ybai@cse.cuhk.edu.hk

Overview

2/33

RARS

Assembly Programing

System Service in RARS

Lab Assignment

Overview

RARS

3/33

What is RARS

> RARS is the RISC-V Assembler, Runtime and Simulator for RISC-V assembly
language programs

> RARS supports RISC-V IMFDN ISA base (riscv32 & riscv64).

> RARS supports debugging using breakpoints and/or ebreak.

> RARS supports side by side comparison from psuedo-instruction to machine code with
intermediate steps.

» You need Java environment to run RARS
Dowload it here: https://github.com/TheThirdOne/rars/releases/

download/continuous/rars_345cl7b. jar
Execute the command to start RARS: java -jar <rars jar path>

3/33

https://github.com/TheThirdOne/rars/releases/download/continuous/rars_345c17b.jar
https://github.com/TheThirdOne/rars/releases/download/continuous/rars_345c17b.jar

RARS Overview

B
B[m[al2][s] ¢ [s[Elo[# [x[e]e):

Tan | xecme |

olo|[e] Tmu ‘;pmnm‘x(n‘n moracton)

[Roistars | Foatng ot |
e N Vaue

g1 text o
9@ -elobl start

g3 _start:nop

99 test2r 1i 5l OxfffefffB0000000
00 seliwsld, 51, 0 H
101 Li 7, OsEEESTEEER0000000

w2 lies 2
103 bne w14, 5T, fail H

104
105 test.3: 1i xi, OSTEEFETTfE0000000 i
105 srliv i, 51, 1 3
107 Li x7, 050000000040000000 B
08 i 3 =

RS e <14, a1, fuit
10

i testéidia,

f T I
Line: 100 Coun: 19 5 show Lo mbers

[Mossages | runi0

Sle sememiling £ \Eameseehinsee UL CERGS 20 ool e oo

ucning in F:\Resesc b\ e\ TAYCEIGOAE0\ el s\, asm i 92 colimn 2 RS doss ot vocomize the lobal dissstive, Tgmred
o7 e e\ ACEIGS420 | ol e aem Line 315 colmn 2. TABS doee s vecopeize the glebal Sictivs Ipred

erning in T\
Cloar | peseile: cpeeseion sropleced succesefill

4/33

Flo Edt fun Sotngs Tools o

[Ole[eaal[s|¢[+|Clalx|ele/e @

[l e

[Rewtrs | Foming P | Conrt e sioes

Name Numper

ez tia

el 1%
tisi

=
e sit, =7, il
rEm Ty

G @
oo 31 e
o i sheh
G e S AT
e i 1710

i e T
3 o

Ve (8) Value (10) Ve (18 Value (1)
o

catoouaonn

R

cemabls. scembling F \Resvarchlai e TA\CEBOOR0 ool o 1

eening 8 \fesearckin e AVCHISH0 oo s\t s L 312 o 21 SIS des ot sacogmise the clobal divuctive. Lamored,
e in Fi\Researchlnisc\TA\CEIGH20 ol stest, sm line 318 columm 2: RAS doss not sesognize the _elobal dixestive, Tenaced
[clear | hesemble: speration completed succssstully.

RARS execution panel
5/33

RARS Basic introduction

Fle £t Fun Setings Toos Help

[2][5] ¢ [$[E[A]%| [£][6]6]9]0]/0[0] [0] mzxrrmrrnoy Tools panel

EEEE

Tan | xecme |

[Roistars | Foatng ot |
e N

g1 text o

B i Source codes panel
o j—"

99 test2r 1i 5l OxfffefffB0000000
00 seliwsld, 51, 0
0st£££1££50000000

w2 lies 2
103 bne xl4, T, fail

105 test.3: 1i xi, OSTEEFETTfE0000000
105 srliv xle,

L7 1 57, 0x0000000040000000

s lien 3

103 bme xld, a7, fail

m sl Ll

Line: 100 Conm: 187 m Registers panel

[Messages [Fanto

S T TSRS

e s e Program information panel

e Wb

6/33

Flo Edt fun Sotngs Tools o

[Ole[eaal[s|¢[+|Clalx|ele/e @

[l e

Tools panel

[Rewtrs | Foming P | Conrt e sioes

R

cemabls. scembling F \Resvarchlai e TA\CEBOOR0 ool o 1

eesing 1 1 escar ez A\ CHSH20\ ol
eseing i \Reseorchnsc\ TAVCHIGHE ol st s L 318 colum 21 RIS doss not secommize the

[clear | hesemble: speration completed succssstully.

7/33

U — '
gisen t= Program information panel

Name. Number
o5 —swmerw
[99 tere2 11
00— ol w1t i G
Tor 1 21,
o i
O3 o1 73,5 @ ot
e st e et 7, il
G008 a1, 5400 s
oottt iie 21210
IO i sl T i T
i 4
hidic 37.57,0
Volue (+10) Valus (+14) Volus (+16)
] C
cxooonna
Registers panel

RARS execution panel

Basic introduction

8/33

vVvYvyvVvyVvyy

Create a new source file: Ctrl + N
Close the current source file: Ctrl + W
Assemble the source code: F3
Execute the current source code: F5
Step running: F7

Instructions & System call query: F1

@aﬂfmiés

Overview

Assembly Programing

9/33

Registers

> We can manipulate 32 general purpose registers in assembly programming directly

> We prefer using aliases to indicate registers
» Instructions category

» Load and store instructions
» Bitwise instructions

» Arithmetic instructions

» Control transfer instructions
» Pseudo instructions

9/33

Register Names and Descriptions

10/33

Table: Register names and descriptions

Register Names | ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
X2 sp Stack pointer
x3 ap Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register
X6-7 t1-12 Temporary register
x8 s0/fp Saved register / Frame pointer
x9 s Saved register
x10-11 a0-at Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-16

Temporary registers

Stack Pointer Register

Stack pointer register

In RISC-V architecture, x2 register is use as Stack Pointer sp0 and holds the base address
of the stack.

Stack base address must aligned to 4-bytes. Failing which, a load / store alignment fault
may arise.

11/33

Global Pointer Register

12/33

Global pointer register

Data is allocated to the memory when it is globally declared in an application. Using
pc-relative or absolute addressing mode leads to utilization of extra instructions, thus
increasing the code size.

In order to decrease the code size, RISC-V places all the global variables in a particular
area which is pointed to, using the x3 gp register. The x3 register will hold the base address
of the location where the global variables reside.

Thread Pointer Register

Thread pointer register

The x1 ra register is used to save the subroutine / function return addresses. Before a
subroutine call is performed, x1 is explicitly set to the subroutine return address which is
usually pc + 4.

The standard software calling convention uses x1 register to hold the return address on a
function call.

13/33

Argument Register

Argument register

In RISC-V, 8 argument registers, namely, x10 to x17 are used to pass arguments in a
subroutine / function. Before a subroutine call is made, the arguments to the subroutine are
copied to the argument registers. The stack is used in case the number of arguments
exceeds 8.

14/33

Data Types and Literals

Data types:
» Instructions are all 32 bits
> byte(8 bits), halfword (2 bytes), word (4 bytes), double word (8 bytes)
Literals:
> numbers entered as is. €.g. 12 in decimal, and 0xC in hexadecimal
» characters enclosed in single quotes. e.g. ‘b’
» strings enclosed in double quotes. e.g. “A string”

15/33

@ﬂfm:é:;

Program Structure |

> Just plain text file with data declarations, program code (name of file can be suffixed
with .asm in RARS)

» Data declaration section followed by program code section

Data Declarations

> Identified with assembler directive .data.
» Declares variable names used in program
P Storage allocated in main memory (e.g., RAM)

> <name>: .<datatype> <value>

16/33

Proiram Structure |l

» placed in section of text identified with assembler directive .text
» contains program code (instructions)
P starting point for code e.g. execution given label start:

Comments

Anything following # on a line

17/33

Program Structure I

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.asm

Bare-bones outline of RISC-V assembly language program

.globl _start

.data # variable declarations follow this line
#
.text # instructions follow this Iline

_start: # indicates start of code

#

End of program, leave a blank line afterwards is preferred

18/33

An Example Program

_start

.data
welcome_msg: .asciz "Welcome to ENG342@!\n"

-text
_start:

» Welcome_msg

L;‘sﬂfm’—%@g

19/33

An Example Program

20/33

Eile Edit Run Settings Iools Help

[Clw[@a[3][s] ¢ [+[Claj#| (x| e|e (0o e[0)] @] "wrwxr=r sy

Edit | Execute |

Control and Status |

—
[Text Segment

Bkpt |

Floating Point

Name

Number

Basic Source
0,x0,1 9 addi a0, x0, 1

11,0x0000fc10 [11: la al, velcome_msgq

XL, O FFFF

,x0, 21 13 addi a2, x0, 21

X0, 0x00000040 15 addi a7, x0, 64
17: ecall

[} Data Segment

axofc
axoe 00000 0x00000000)

Value (+c) Value (+10) Value (+14) Value (+1E) Value (+1c)
0x00000000 tuen:z
| 0x00000000 0x00000000)

060 00000000 06000000 00000000

0x00600600 uztuu mum uuu:r 00000000 00000000 0X00000600 06006000
0x00600600 0x00006000) 06000060 00000000 00000000 0x00000000 ..m.u

0 Gx00000000 vanuu 00000000 00600000 00030000 000000000, 0x00000000)
(0040000 6x0000000 00000000 00000000 00000000 0x00000000__ 0x00000000)
004000c(

064000e 0 0x00000000 00000000 0000000 0x00000000,___ 0xG060000) 0x00000000

2} imal Values []AsCll

Messages | Run I/O

-~ program is finished running (dropped off botto

Jelcome to ENG3420!

A2 e

Instructions Overview |

LA: The Load Address (/a) loads the location address of the specified SYMBOL.

la rd, SYMBOL
.data
NumElements: .byte 6
.text

la x5, NumElements # assign memory[NumElements] to x5

LI: The Load Immediate (LI) loads a register (rd) with an immeidate value given int the
instruction.

Syntax

li rd, CONSTANT ﬁ

21/33

Instructions Overview I

Usage

1i x5,100 # assign 100 to x5

LD: The Load Double word (LD) instruction does the fetching of 64-bit value from memory
and loads into the destination register (rd).

Syntax

Id rd, offset(rs1)

Usage

1d x4, 1352(x9) # assign memory[x9+1352] to x4

SD: The Store Double word (SD) instruction does the copying of 64-bit value from register
(rs2) and loads into the memory(rs1). ﬁ

22/33

Instructions Overview ll|

23/33

Syntax

sd rs2, offset(rs1)

Usage

sd x4, 1352(x9) # assign mem[x9+1352] to x4

LI: The Load Immediate (LI) loads a register (rd) with an immeidate value given int the
instruction.

Syntax
li rd, CONSTANT

Usage

F‘

Instructions Overview |V

1i x5,100 # assign 100 to x5

SLL: Shift Logical Left (SLL) performs logical left on the value in register (rs1) by the shift
amountheld in the register (rs2) and stores in (rd) register.

Syntax

sl rd, rs1, rs2

1i x5, 4 # assign 4 to x5
1i x3, 2 # assign 2 to x3
sll x1, x5, x3 # assign x5 << x3 to x1

SRL: Shift Logically Right (SRL) performs logical Right on the value in register (rs1) by the
shift amount held in the register (rs2) and stores in (rd) register. E‘;@

24/33

Instructions Overview V

Syntax

srlrd, rs1, rs2

Usage

1i x5, 1024 # assign 1024 to x5
1li x3, 2 # assign 2 to x3
srl x1, x5, x3 # assign x5 >> x3 to x1

SLLI: Shift Logically Left Inmediate (SLLI) performs logical left on the value in register (rs1)
by the shift amount held in the register (imm) and stores in (rd) register.

Syntax

sllird, rs1, imm

N

25/33

Instructions Overview VI

s1l1i x1, x1, 3 # assign x1 << 3 to x1

SRLI: Shift Logically Right Immediate (SRLI) performs logical Right on the value in register
(rs1) by the shift amount held in the register (imm) and stores in (rd) register.

Syntax

srlird, rs1, imm

srli x1, x1, 1 # assign x1 >> 1 to x1

26/33

More Information

For more information about RISC-V instructions and assembly programing you can refer to:
1. Lecture slides and textbook.
2. RARS Help: F1

3. https://github.com/riscv/riscv-asm-manual/blob/master/
riscv—-asm.md

4. https:

//web.eecs.utk.edu/~smarzl/courses/ece356/notes/assembly/

2

27/33

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

Overview

System Service in RARS

28/33

System Calls in RARS |

RARS provides a small set of operating system-like services through the system call
(ecall) instruction. Register contents are not affected by a system call, except for result
registers in some instructions.

» Load the service number (or number) in register a7.
» Load argument values, if any, in a0, al, a2 ..., as specified.
P Issue ecall instruction.

» Retrieve return values, if any, from result registers as specified.

28/33

System Calls in RARS |l

29/33

Name
PrintInt
PrintFloat
PrintString
ReadInt
ReadFloat

ReadString

Open

Read

Write

LSeek

Number

1024

63

64

62

Description
Prints an integer
Prints a float point number
Prints a null-terminated string to the console
Reads an int from input console
Reads a float from input console
Reads a string from the console
Opens a file from a path Only supported flags

(al), read-only (0), write-only (1) and write-
append (9)

Read from a file descriptor into a buffer

Write to a filedescriptor from a buffer

Seek to a position in a file

Inputs
a0 = integer to print
fa0 = float to print
a0 = the address of the string
a0 = the int
fa0 = the float
a0 = address of input buffer, al =

maximum number of characters to read

a0 = Null terminated string for the path,
al = flags

a0 = the file descriptor, al = address of
the buffer, a2 = maximum length to
read

a0 = the file descriptor, al = the buffer
address, a2 = the length to write

a0 = the file descriptor, al = the offset

for the base, a2 is the begining of the

file (0), the current position (1), or the
end of the file (2)}

Outputs
N/A
N/A
N/A
N/A
N/A

N/A

a0 = the file decriptor or -1 if
an error occurred

a0 = the length read or -1 if

error

a0 = the number of charcters
written

a0 = the selected position from
the beginning of the file or -1
is an error occurred

An Example of System Calls in RARS |

An example shows how to use system calls in RARS

Using system call

Comment giving name of program and description

sys—call.asm

Bare-bones outline of RISC-V assembly language program
.globl _start

.data
msg: .asciz "Hello, _world!\n"

.text

_start:

1i a7, 4 # system call code for PrintString
la a0, msg # address of string to print

ecall # Use the system call

End of program, leave a blank line afterwards is preferred

You can check the output in Run/IO of the program information panel. @g@

30/33

An Example of System Calls in RARS Il

> Jiloads a register with an immediate value given in the instruction
P /aloads an address of the specified symbol

P .asciz emits the specified string within double quotes and includes the terminated zero
character at the end

31/33

Overview

Lab Assignment

32/33

Lab Assignment

Write an assembly program with the following requirements:

1. Define two variables varl and var2 which have initial value 15 and 19, respectively.
Print RAM addresses of varl and var?2 using syscall.
Increase varl by 1 and multiply var2 by 4.

Print varl and var?2.

o > 0N

Swap varl and var?2 and print them.

Submission Method:

Submit the source code and report after the whole Lab1, onto blackboard.

2

32/33

Some Tips

Variables should be declared following the . data identifier.
<name>: .<datatype> <value>

Use 1a instruction to access the RAM address of declared data.
Use system call to print integers.

Do not forget exit system call.

o a ks~ 0 Db~

You should print a new line to distinguish outputs!

33/33

	Main Talk
	RARS
	Assembly Programing
	System Service in RARS
	Lab Assignment

