
CENG3420
Lab 1-1: RISC-V Assembly Language Programing

Chen BAI

Department of Computer Science and Engineering
The Chinese University of Hong Kong

cbai@cse.cuhk.edu.hk

Spring 2021

1 / 33

mailto:ybai@cse.cuhk.edu.hk

Overview

RARS

Assembly Programing

System Service in RARS

Lab Assignment

2 / 33

Overview

RARS

Assembly Programing

System Service in RARS

Lab Assignment

3 / 33

What is RARS

I RARS is the RISC-V Assembler, Runtime and Simulator for RISC-V assembly
language programs

I RARS supports RISC-V IMFDN ISA base (riscv32 & riscv64).
I RARS supports debugging using breakpoints and/or ebreak.
I RARS supports side by side comparison from psuedo-instruction to machine code with

intermediate steps.
I You need Java environment to run RARS

Dowload it here: https://github.com/TheThirdOne/rars/releases/
download/continuous/rars_345c17b.jar
Execute the command to start RARS: java -jar <rars jar path>

3 / 33

https://github.com/TheThirdOne/rars/releases/download/continuous/rars_345c17b.jar
https://github.com/TheThirdOne/rars/releases/download/continuous/rars_345c17b.jar

RARS Overview

RARS edit panel

4 / 33

RARS execution panel
5 / 33

RARS Basic introduction

RARS edit panel

6 / 33

RARS execution panel
7 / 33

Basic introduction

I Create a new source file: Ctrl + N
I Close the current source file: Ctrl + W
I Assemble the source code: F3
I Execute the current source code: F5
I Step running: F7
I Instructions & System call query: F1

8 / 33

Overview

RARS

Assembly Programing

System Service in RARS

Lab Assignment

9 / 33

Registers

I We can manipulate 32 general purpose registers in assembly programming directly
I We prefer using aliases to indicate registers
I Instructions category

I Load and store instructions
I Bitwise instructions
I Arithmetic instructions
I Control transfer instructions
I Pseudo instructions

9 / 33

Register Names and Descriptions

Table: Register names and descriptions

Register Names ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register
x6-7 t1 - t2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 s1 Saved register

x10-11 a0-a1 Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

10 / 33

Stack Pointer Register

Stack pointer register

In RISC-V architecture, x2 register is use as Stack Pointer sp0 and holds the base address
of the stack.
Stack base address must aligned to 4-bytes. Failing which, a load / store alignment fault
may arise.

11 / 33

Global Pointer Register

Global pointer register

Data is allocated to the memory when it is globally declared in an application. Using
pc-relative or absolute addressing mode leads to utilization of extra instructions, thus
increasing the code size.
In order to decrease the code size, RISC-V places all the global variables in a particular
area which is pointed to, using the x3 gp register. The x3 register will hold the base address
of the location where the global variables reside.

12 / 33

Thread Pointer Register

Thread pointer register

The x1 ra register is used to save the subroutine / function return addresses. Before a
subroutine call is performed, x1 is explicitly set to the subroutine return address which is
usually pc + 4.
The standard software calling convention uses x1 register to hold the return address on a
function call.

13 / 33

Argument Register

Argument register

In RISC-V, 8 argument registers, namely, x10 to x17 are used to pass arguments in a
subroutine / function. Before a subroutine call is made, the arguments to the subroutine are
copied to the argument registers. The stack is used in case the number of arguments
exceeds 8.

14 / 33

Data Types and Literals

Data types:
I Instructions are all 32 bits
I byte(8 bits), halfword (2 bytes), word (4 bytes), double word (8 bytes)

Literals:
I numbers entered as is. e.g. 12 in decimal, and 0xC in hexadecimal
I characters enclosed in single quotes. e.g. ‘b’
I strings enclosed in double quotes. e.g. “A string”

15 / 33

Program Structure I
I Just plain text file with data declarations, program code (name of file can be suffixed

with .asm in RARS)
I Data declaration section followed by program code section

Data Declarations

I Identified with assembler directive .data.
I Declares variable names used in program
I Storage allocated in main memory (e.g., RAM)
I <name>: .<datatype> <value>

16 / 33

Program Structure II
Code

I placed in section of text identified with assembler directive .text
I contains program code (instructions)
I starting point for code e.g. execution given label start:

Comments
Anything following # on a line

17 / 33

Program Structure III

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.asm
Bare-bones outline of RISC-V assembly language program

.globl _start

.data # variable declarations follow this line
...

.text # instructions follow this line

_start: # indicates start of code
...

End of program, leave a blank line afterwards is preferred

18 / 33

An Example Program

19 / 33

An Example Program

20 / 33

Instructions Overview I
LA: The Load Address (la) loads the location address of the specified SYMBOL.

Syntax

la rd, SYMBOL

Usage

.data
NumElements: .byte 6
.text
la x5, NumElements # assign memory[NumElements] to x5

LI: The Load Immediate (LI) loads a register (rd) with an immeidate value given int the
instruction.

Syntax

li rd, CONSTANT

21 / 33

Instructions Overview II
Usage

li x5,100 # assign 100 to x5

LD: The Load Double word (LD) instruction does the fetching of 64-bit value from memory
and loads into the destination register (rd).

Syntax

ld rd, offset(rs1)

Usage

ld x4, 1352(x9) # assign memory[x9+1352] to x4

SD: The Store Double word (SD) instruction does the copying of 64-bit value from register
(rs2) and loads into the memory(rs1).

22 / 33

Instructions Overview III

Syntax

sd rs2, offset(rs1)

Usage

sd x4, 1352(x9) # assign mem[x9+1352] to x4

LI: The Load Immediate (LI) loads a register (rd) with an immeidate value given int the
instruction.

Syntax

li rd, CONSTANT

Usage

23 / 33

Instructions Overview IV

li x5,100 # assign 100 to x5

SLL: Shift Logical Left (SLL) performs logical left on the value in register (rs1) by the shift
amountheld in the register (rs2) and stores in (rd) register.

Syntax

sll rd, rs1, rs2

Usage

li x5, 4 # assign 4 to x5
li x3, 2 # assign 2 to x3
sll x1, x5, x3 # assign x5 << x3 to x1

SRL: Shift Logically Right (SRL) performs logical Right on the value in register (rs1) by the
shift amount held in the register (rs2) and stores in (rd) register.

24 / 33

Instructions Overview V
Syntax

srl rd, rs1, rs2

Usage

li x5, 1024 # assign 1024 to x5
li x3, 2 # assign 2 to x3
srl x1, x5, x3 # assign x5 >> x3 to x1

SLLI: Shift Logically Left Immediate (SLLI) performs logical left on the value in register (rs1)
by the shift amount held in the register (imm) and stores in (rd) register.

Syntax

slli rd, rs1, imm

Usage

25 / 33

Instructions Overview VI

slli x1, x1, 3 # assign x1 << 3 to x1

SRLI: Shift Logically Right Immediate (SRLI) performs logical Right on the value in register
(rs1) by the shift amount held in the register (imm) and stores in (rd) register.

Syntax

srli rd, rs1, imm

Usage

srli x1, x1, 1 # assign x1 >> 1 to x1

26 / 33

More Information

For more information about RISC-V instructions and assembly programing you can refer to:
1. Lecture slides and textbook.
2. RARS Help: F1
3. https://github.com/riscv/riscv-asm-manual/blob/master/

riscv-asm.md

4. https:
//web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

27 / 33

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

Overview

RARS

Assembly Programing

System Service in RARS

Lab Assignment

28 / 33

System Calls in RARS I

RARS provides a small set of operating system-like services through the system call
(ecall) instruction. Register contents are not affected by a system call, except for result
registers in some instructions.
I Load the service number (or number) in register a7.
I Load argument values, if any, in a0, a1, a2 ..., as specified.
I Issue ecall instruction.
I Retrieve return values, if any, from result registers as specified.

28 / 33

System Calls in RARS II

29 / 33

An Example of System Calls in RARS I

An example shows how to use system calls in RARS

Using system call

Comment giving name of program and description
sys-call.asm
Bare-bones outline of RISC-V assembly language program

.globl _start

.data
msg: .asciz "Hello, world!\n"

.text
_start:
li a7, 4 # system call code for PrintString
la a0, msg # address of string to print
ecall # Use the system call
End of program, leave a blank line afterwards is preferred

You can check the output in Run/IO of the program information panel.

30 / 33

An Example of System Calls in RARS II

I li loads a register with an immediate value given in the instruction
I la loads an address of the specified symbol
I .asciz emits the specified string within double quotes and includes the terminated zero

character at the end

31 / 33

Overview

RARS

Assembly Programing

System Service in RARS

Lab Assignment

32 / 33

Lab Assignment

Write an assembly program with the following requirements:
1. Define two variables var1 and var2 which have initial value 15 and 19, respectively.
2. Print RAM addresses of var1 and var2 using syscall.
3. Increase var1 by 1 and multiply var2 by 4.
4. Print var1 and var2.
5. Swap var1 and var2 and print them.

Submission Method:
Submit the source code and report after the whole Lab1, onto blackboard.

32 / 33

Some Tips

1. Variables should be declared following the .data identifier.
2. <name>: .<datatype> <value>

3. Use la instruction to access the RAM address of declared data.
4. Use system call to print integers.
5. Do not forget exit system call.
6. You should print a new line to distinguish outputs!

33 / 33

	Main Talk
	RARS
	Assembly Programing
	System Service in RARS
	Lab Assignment

