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Two Key Principles of Machine Design
1. Instructions are represented as numbers and, as such, are indistinguishable from data
2. Programs are stored in alterable memory (that can be read or written to) just like data

Stored-Program Concept

I Programs can be shipped as files of binary numbers – binary
compatibility

I Computers can inherit ready-made software provided they are
compatible with an existing ISA – leads industry to align around
a small number of ISAs

Accounting  prg    
(machine  code)

C  compiler    
(machine  code)

Payroll                  
data

Source  code  in  
C  for  Acct  prg

Memory
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Assembly Language Instructions

The language of the machine
I Want an ISA that makes it easy to build the hardware and the compiler while

maximizing performance and minimizing cost
Our target: the RISC-V ISA
I similar to other ISAs developed since the 1980’s
I RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco, NEC,

Nintendo, Sony, ...

Design Goals

Maximize performance, minimize cost, reduce design time (time-to-market), minimize
memory space (embedded systems), minimize power consumption (mobile systems)
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CISC vs. RISC

Complex Instruction Set Computer (CISC)

Lots of instructions of variable size, very memory optimal, typically less registers.

I Intel x86

Reduced Instruction Set Computer (RISC)

Instructions, all of a fixed size, more registers, optimized for speed. Usually called a
“Load/Store” architecture.

I RISC-V, LC-3b MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...
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RISC – Reduced Instruction Set Computer

RISC Philosophy

I fixed instruction lengths
I load-store instruction sets
I limited number of addressing modes
I limited number of operations

I Instruction sets are measured by how well compilers use them as opposed to how well
assembly language programmers use them
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RISC-V (RISC) Design Principles
Simplicity favors regularity
I fixed size instructions
I small number of instruction formats
I opcode always the first 6 bits

Smaller is faster
I limited instruction set
I limited number of registers in register file
I limited number of addressing modes

Make the common case fast
I arithmetic operands from the register file (load-store machine)
I allow instructions to contain immediate operands

Good design demands good compromises
I For RV32I, 4 base instruction formats (R/I/S/U) and 2 extended instruction formats

(B/J)
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RISC-V Instruction Fields
RISC-V fields are given names to make them easier to refer to

opcode 6-bits, opcode that specifies the operation
rs1 5-bits, register file address of the first source operand
rs2 5-bits, register file address of the second source operand
rd 5-bits, register file address of the result’s destination

imm 12-bits / 20-bits, immediate number field
funct 3-bits / 10-bits, function code augmenting the opcode

8 / 46



The RISC-V ISA

Instruction Categories
I Load and Store instructions
I Bitwise instructions
I Arithmetic instructions
I Control transfer instructions
I Pseudo instructions
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RISC-V Register File
Register  File

src1  addr

src2  addr

dst  addr

write  data

32  bits

src1
data

src2
data

32
locations

325

32

5

5

32

write  control

I Holds thirty-two 32-bit general purpose registers
I Two read ports
I One write port

Registers are
I Faster than main memory

I But register files with more locations are slower
I E.g., a 64 word file may be 50% slower than a 32 word file
I Read/write port increase impacts speed quadratically

I Easier for a compiler to use
I (A*B)-(C*D)-(E*F) can do multiplies in any order vs. stack

I Can hold variables so that code density improves (since register are named with fewer
bits than a memory location)
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Aside: RISC-V Register Convention

Table: Register names and descriptions

Register Names ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register
x6-7 t1 - t2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 s1 Saved register

x10-11 a0-a1 Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers
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History of RISC-V
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RISC-V Arithmetic Instructions

I RISC-V assembly language arithmetic statement

add t0, a1, a2
sub t0, a1, a2

I Each arithmetic instruction performs one operation
I Each specifies exactly three operands that are all contained in the datapath’s register

file (t0, s1, s2)

destination = source1 op source2

I Instruction Format (R format)
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RISCV Immediate Instructions

I Small constants are used often in typical code

Possible approaches?

I put “typical constants” in memory and load them
I create hard-wired registers (like zero) for constants like 1
I have special instructions that contain constants

addi sp, sp, 4 # sp = sp + 4
slti t0, s2, 15 # t0 = 1 if s2 < 15

I Machine format (I format)
I The constant is kept inside the instruction itself!
I Immediate format limits values to the range −211 to +211 − 1
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Aside: How About Larger Constants?
I We’d also like to be able to load a 32 bit constant into a register
I For this we must use two instructions

1. A new “load upper immediate” instruction (U-type format, load top 20bits)

lui t0, 1010101010101010

2. Then must get the lower order bits right, use

ori t0, t0, 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010                              1010101010101010
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RISC-V Shift Operations

I Need operations to pack and unpack 8-bit characters into 32-bit words
I Shifts move all the bits in a word left or right

slli t2, s0, 8 # t2 = s0 << 8 bits
srli t2, s0, 8 # t2 = s0 >> 8 bits

I Instruction Format (I format)
I Such shifts are called logical because they fill with zeros
I Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit positions

16 / 46



RISC-V Logical Operations

There are a number of bit-wise logical operations in the RISC-V ISA

R Format

and t0, t1, t2 # t0 = t1 & t2
or t0, t1, t2 # t0 = t1 | t2
nor t0, t1, t2 # t0 = not(t1 | t2)

I Format

andi t0, t1, 0xFF00 # t0 = t1 & 0xff00
ori t0, t1, 0xFF00 # t0 = t1 | 0xff00
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RISC-V Memory Access Instructions

I Two basic data transfer instructions for accessing memory

lw t0, 4(s3) # load word from memory
sw t0, 8(s3) # store word to memory

I The data is loaded into (lw) or stored from (sw) a register in the register file – a 5 bit
address

I The memory address – a 32 bit address – is formed by adding the contents of the base
address register to the offset value

I A 12-bit field in RV32I meaning access is limited to memory locations within a region
from −4 KB to 4 KB of the address in the base register
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Machine Language – Load Instruction
Load/Store Instruction Format (I format):
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Machine Language – Load Instruction
Load/Store Instruction Format (I format):
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Byte Addresses

I Since 8-bit bytes are so useful, most architectures address individual bytes in memory
I Alignment restriction – the memory address of a word must be on natural word

boundaries (a multiple of 4 in RV32I)
I Big Endian: leftmost byte is word address

I IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
I Little Endian: rightmost byte is word address

I RISC-V, Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3                    2                    1                      0

little  endian  byte  0

0                    1                    2                      3
big  endian  byte  0
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Aside: Loading and Storing Bytes

RISC-V provides special instructions to move bytes

lb t0, 1(s3) # load byte from memory
sb t0, 6(s3) # store byte to memory

I What 8 bits get loaded and stored?
I Load byte places the byte from memory in the rightmost 8 bits to the destination

register
I Store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in

memory
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EX-1:
Given following code sequence and memory state:

add s3, zero, zero
lb t0, 1(s3)
sb t0, 6(s3)

Memory

0x  0  0  9  0  1  2  A  0
Data Word  Address

(Decimal)

0
4
8
12
16
20
24

0x  F  F  F  F  F  F  F  F
0x  0  1  0  0  0  4  0  2
0x  1  0  0  0  0  0  1  0
0x  0  0  0  0  0  0  0  0
0x  0  0  0  0  0  0  0  0
0x  0  0  0  0  0  0  0  0

1. What value is left in t0?
2. What word is changed in Memory and to what?
3. What if the machine was little Endian?
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RISC-V Control Flow Instructions

RISC-V conditional branch instructions:

bne s0, s1, Lbl # go to Lbl if s0 != s1
beq s0, s1, Lbl # go to Lbl if s0 = s1

Example

if (i==j) h = i + j;

bne s0, s1, Lbl1
add s3, s0, s1

Lbl1: ...

I Instruction Format (B format)
I How is the branch destination address specified ?
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In Support of Branch Instructions

I We have beq, bne, but what about other kinds of branches (e.g., branch-if-less-than)?
I For this, we need yet another instruction, slt

Set on less than instruction:

slt t0, s0, s1 # if s0 < s1 then
# t0 = 1 else
# t0 = 0

I Instruction format (R format or I format)

Alternate versions of slt

slti t0, s0, 25 # if s0 < 25 then t0 = 1 ...
sltu t0, s0, s1 # if s0 < s1 then t0 = 1 ...
sltiu t0, s0, 25 # if s0 < 25 then t0 = 1 ...
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Aside: More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register zero to create other
conditions
I less than: blt s1, s2, Label

slt t0, s1, s2 # t0 set to 1 if
bne t0, zero, Label # s1 < $s2

I less than or equal to: ble s1, s2, Label

I greater than: bgt s1, s2, Label

I great than or equal to: bge s1, s2, Label

I Such branches are included in the instruction set as pseudo instructions – recognized
(and expanded) by the assembler
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Bounds Check Shortcut

I Treating signed numbers as if they were unsigned gives a low cost way of checking if
0 ≤ x < y (index out of bounds for arrays)

sltu t0, s1, t2 # t0 = 0 if
# s1 > t2 (max)
# or s1 < 0 (min)

beq t0, zero, IOOB # go to IOOB if
# t0 = 0

I The key is that negative integers in two’s complement look like large numbers in
unsigned notation.

I Thus, an unsigned comparison of x < y also checks if x is negative as well as if x is
less than y.
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Other Control Flow Instructions

I RISC-V also has an unconditional branch instruction or jump instruction:

jal zero, label # go to label, label can be an
immediate value

I Instruction Format (J Format)
I J is a pseudo instruction of unconditional jal and it will discard the return address

(e.g., j label)

27 / 46



EX-2: Branching Far Away

What if the branch destination is further away than can be captured in 12 bits? Re-write the
following codes.

beq s0, s1, L1
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EX: Compiling a while Loop in C

while (save[i] == k) i += 1;

Assume that i and k correspond to registers s3 and s5 and the base of the array save is
in s6.

Loop: sll t1, s3, 2 # Temp reg t1 = i * 4
add t1, t1, s6 # t1 = address of save[i]
lw t0, 0(t1) # Temp reg t0 = save[i]
bne t0, s5, Exit # go to Exit if save[i] != k
addi s3, s3,1 # i = i + 1
j Loop # j is a pseudo instruction for jal

# go to Loop
Exit:

Note: left shift s3 to align word address, and later address is increased by 1
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Six Steps in Execution of a Procedure

1. Main routine (caller) places parameters in a place where the procedure (callee) can
access them
I a0 – a7: four argument registers

2. Caller transfers control to the callee
3. Callee acquires the storage resources needed
4. Callee performs the desired task
5. Callee places the result value in a place where the caller can access it

I s0-s11: 12 value registers for result values
6. Callee returns control to the caller

I ra: one return address register to return to the point of origin
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Instructions for Accessing Procedures
We have learnt jal, now let’s continue
I RISC-V procedure call instruction:

jal ra, label # jump and link,
# label can be an immediate value

I Saves PC + 4 in register ra to have a link to the next instruction for the procedure
return

I Machine format (J format):
I Then can do procedure return with a

jalr x0, 0(ra) # return

I Instruction format (I format)

31 / 46



Example of Accessing Procedures

I For a procedure that computes the GCD of two values i (in t0) and j (in t1):
gcd(i,j);

I The caller puts the i and j (the parameters values) in a0 and a1 and issues a

jal ra, gcd # jump to routine gcd

I The callee computes the GCD, puts the result in s0, and returns control to the caller
using

gcd: . . . # code to compute gcd
jalr x0, 0(ra) # return
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What if the callee needs to use more registers than allocated to argument and return
values?

I Use a stack: a last-in-first-out queue
I One of the general registers, sp, is used to address the stack
I “grows” from high address to low address
I push: add data onto the stack, data on stack at new sp

sp = sp - 4

I pop: remove data from the stack, data from stack at sp

sp = sp + 4
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Allocating Space on the Stack

I The segment of the stack containing a procedure’s
saved registers and local variables is its procedure
frame (aka activation record)

I The frame pointer (fp) points to the first word of the
frame of a procedure – providing a stable “base”
register for the procedure

I fp is initialized using sp on a call and sp is restored
using fp on a return
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Allocating Space on the Heap

I Static data segment for constants and other static
variables (e.g., arrays)

I Dynamic data segment (aka heap) for structures that
grow and shrink (e.g., linked lists)

I Allocate space on the heap with malloc() and free
it with free() in C
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EX-3: Compiling a C Leaf Procedure

Leaf procedures are ones that do not call other procedures. Give the RISC-V assembler
code for the follows.

int leaf_ex (int g, int h, int i, int j)
{

int f;
f = (g+h) - (i+j);
return f;

}

Solution:

Suppose g, h, i, and j are in a0, a1, a2, a3

leaf_ex: addi sp, sp, -8 # make stack room
sw t1, 4(sp) # save t1 on stack
sw t0, 0(sp) # save t0 on stack
add t0, a0, a1
add t1, a2, a3
sub s0, t0, t1
lw t0, 0(sp) # restore t0
lw t1, 4(sp) # restore t1
addi sp, sp, 8 # adjust stack ptr
jalr zero, 0(ra)
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Nested Procedures

I Nested Procedure: call other procedures
I What happens to return addresses with nested procedures?

int rt_1 (int i)
{

if (i == 0) return 0;
else return rt_2(i-1);

}
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Nested procedures (cont.)

caller: jal rt_1
next: . . .

rt_1: bne a0, zero, to_2
add s0, zero, zero
jalr zero, 0(ra)

to_2: addi a0, a0, -1
jal ra, rt_2
jalr zero, 0(ra)

rt_2: . . .

I On the call to rt_1, the return address (next in the caller routine) gets stored in ra.

Question:
What happens to the value in ra (when a0 != 0) when to_2 makes a call to rt_2?
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Compiling a Recursive Procedure
A procedure for calculating factorial

int fact (int n)
{

if (n < 1) return 1;
else return (n * fact (n-1));

}

I A recursive procedure (one that calls itself!)

fact (0) = 1
fact (1) = 1 * 1 = 1
fact (2) = 2 * 1 * 1 = 2
fact (3) = 3 * 2 * 1 * 1 = 6
fact (4) = 4 * 3 * 2 * 1 * 1 = 24
. . .

I Assume n is passed in a0; result returned in s0
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Compiling a Recursive Procedure (cont.)
fact: addi sp, sp, -8 # adjust stack pointer

sw ra, 4(sp) # save return address
sw a0, 0(sp) # save argument n
slti t0, a0, 1 # test for n < 1
beq t0, zero, L1 # if n >= 1, go to L1
addi s0, zero, 1 # else return 1 in s0
addi sp, sp, 8 # adjust stack pointer
jalr zero, 0(ra) # return to caller

L1: addi a0, a0, -1 # n >= 1, so decrement n
jal ra, fact # call fact with (n-1)

# this is where fact returns
bk_f: lw a0, 0(sp) # restore argument n

lw ra, 4(sp) # restore return address
addi sp, sp, 8 # adjust stack pointer
mul s0, a0, s0 # s0 = n * fact(n-1)
jalr zero, 0(ra) # return to caller

Note: bk_f is carried out when fact is returned.

Question:
Why we don’t load ra, a0 back to registers?
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Atomic Exchange Support

I Need hardware support for synchronization mechanisms to avoid data races where the
results of the program can change depending on how events happen to occur

I Two memory accesses from different threads to the same location, and at least one is
a write

I Atomic exchange (atomic swap): interchanges a value in a register for a value in
memory atomically, i.e., as one operation (instruction)

I Implementing an atomic exchange would require both a memory read and a memory
write in a single, uninterruptable instruction.

I An alternative is to have a pair of specially configured instructions

lr.w t1, 0(s1) # Load-Reserved
sc.w t0, 0(s1) # Store-Conditional
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Automic Exchange with lr and sc
I lr and sc can construct a lock-free program
I lr.w loads a word from the memory, and registers a reservation set - a set of bytes

that subsumes the bytes in the addressed word
I sc.w conditionally writes a word. The sc.w succeeds only if the reservation is still

valid and the reservation set contains the bytes being written. If the sc.w succeeds,
the instruction writes the word to the memory, and it writes zero to the rd. If the sc.w
fails, the instruction does not write to the memory, and it writes a nonzero value to rd.
bytes being written.

Example:

# At the beginning, a0 saves the memory base address
# a1 saves the expected value
# a2 saves another expected value

cas:
lr.w t0, 0(a0) # read the original value
bne t0, a1, fail # if a mismatch occurs, go to fail
sc.w a0, a2, 0(a0) # try to update
jalr zero, 0(ra) # return

fail:
li a0, 1 # set the fail flag
jalr zero, 0(ra) # return
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The C Code Translation Hierarchy

C program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

machine code
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Compiler Benefits

I Comparing performance for bubble (exchange) sort
I To sort 100,000 words with the array initialized to random values on a Pentium 4 with a

3.06 clock rate, a 533 MHz system bus, with 2 GB of DDR SDRAM, using Linux
version 2.4.20

The un-optimized code has the best CPI∗, the O1 version has the lowest instruction
count, but the O3 version is the fastest.

gcc opt Relative	
performance

Clock	cycles	
(M)

Instr count
(M)

CPI

None 1.00 158,615 114,938 1.38

O1	(medium) 2.37 66,990 37,470 1.79

O2	(full) 2.38 66,521 39,993 1.66

O3	(proc mig) 2.41 65,747 44,993 1.46

∗CPI: clock cycles per instruction
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Addressing Modes Illustrated

45 / 46



RISC-V Organization So Far
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