
CENG 3420 Midterm (2021 Spring)
Name:
ID:

Solutions
Q0 (0 marks)

1. What is your last digit of your SID (0 is regarded as 10)? This value is defined as NUM 1
in the whole question paper.

2. What is your last two digits of your SID (00 is regarded as 100)? This value is defined as
NUM 2 in the whole question paper.

3. What is your last three digits of your SID? This value is defined as NUM 3 in the whole
question paper.

Example: if your SID is 12345678, then NUM 1= 8,NUM 2= 78,NUM 3= 678.

Q1 (10 marks)
Select and fill the correct answer.

1. RISC-V is a and ISA. (sol: A)

A. little-endian RISC

B. little-endian CISC

C. big-endian RISC

D. big-endian CISC

2. Virtual memory systems use mechanism. (sol: A)

A. write-back

B. write-through

C. write-allocate

3. The largest positive integer in IEEE754 single-precision floating-point format is
(sol: D)

A. 2126 −2103

B. 2127 −2104

C. 2127 −2103

D. 2128 −2104

1



4. is a type of single address space multiprocessor in which some memory accesses are
much faster than others depending on which processor asks for which word. (sol. B)

A. UMA

B. NUMA

5. Dividing 101012 by 112, the quotient is and the reminder is . (sol: C)

A. 1002 012

B. 1112 012

C. 1112 02

D. 1002 02

6. stores data as electric charge on a capacitor. (sol: B)

A. SRAM

B. DRAM

Q2 (5 marks)

1. Describe the steps that transform a program written in a high-level language such as C
into a representation that is directly executed by a computer processor.

2. Write C statements that corresponds to the two RISC-V assembly instructions below.

srli t0, t1, 3

andi t0, t2, 0xFEF

You should define variables that hold corresponding register values explicitly.

Answer:

1. The program is compiled into an assembly language program, which is then assembled
into a machine language program.

2. int t0;
int t1;
int t2;
t0 = t1 > > 3;
t0 = t2 & 0xFEF;

Q3 (10 marks)
Consider a RISC-V code snippet, and assume that the code is running on a 5-stage RISC-V
core.

2



add x15, x12, x11
ld x13, 4(x15)
ld x12, 0(x2)
or x13, x15, x13
sd x13, 0(x15)

1. Find all data dependences in this instructioin sequence.

2. If the design has not implemented any forwarding or hazard detection, insert NOPs to
ensure the correct execution.

3. If there is forwarding, for the first seven cycles during the execution of this code, specify
which signals are asserted in each cycle by hazard detection and forwarding units.

Answer:

1. The 2nd instruction depends on the 1st instruction (x15, true data dependence); The 3rd
instruction depends on the 1st instruction (x12, anti-dependence); The 4th instruction
depends on the 1st instruction (x15, true data dependence); The 4th instruction depends on
the 2nd instruction (x13, true data dependence & output dependence); The 5th instruction
depends on the 1st instruction (x15, true data dependence); The 5th instruction depends
on the 2nd instruction (x13, true data dependence); The 5th instruction depends on the
4th instruction (x13, true data dependence).

2. add x15, x12, x11
nop
nop
ld x13, 4(x15)
ld x12, 0(x2)
nop
or x13, x15, x13
nop
nop
sd x13, 0(x15)

3. According to the pipeline graph, as shown below:

Because there are no stalls in this code, PCWrite and IF/IDWrite are always 1 and the
mux before ID/EX is always set to pass the control values through.
(1) ForwardA = XX; ForwardB = XX (no instruction in EX stage yet)
(2) ForwardA = XX; ForwardB = XX (no instruction in EX stage yet)
(3) ForwardA = 00; ForwardB = 00 (no forwarding; values taken from registers)
(4) ForwardA = 10; ForwardB = 00 (base register taken from result of previous instruc-
tion)
(5) ForwardA = 01; ForwardB = 01 (base registers taken from results of two previous
instructions)
(6) ForwardA = 00; ForwardB = 10 (rs1 = x15 taken from register; rs2 = x13 taken from

3



result of 1st ld – two instructions ago)
(7) ForwardA = 00; ForwardB = 10 (base register taken from register file. Data to be
written taken from previous instruction)

Q4 (15 marks)
We have a loop as follows.

LOOP: ld a0, 0(a3)
ld a1, 8(a3)
add a2, a0, a1
subi a3, a3, 16
bnez a2, LOOP

Assume that we have the perfect branch prediction (i.e., no stalls due to control hazards) and
there are no delay slots that the pipeline has full forwarding support, and that branches are
resolved in the EX (as opposed to the ID) stage.

1. Show a pipeline execution diagram for the first two iterations of this loop.

2. Mark pipeline stages that do not perform useful work. How often while the pipeline is
full do we have a cycle in which all five pipeline stages are doing useful work? (Begin
with the cycle during which the subi is in the IF stage. End with the cycle during which
the bnez is in the IF stage)

Answer:

1. As shown in the Figure 1

Figure 1: Pipeline execution diagram

2. In a particular clock cycle, a pipeline stage is not doing useful work if it is stalled or if the
instruction going through that stage is not doing any useful work there. As the diagram
above shows, there are not any cycles during which every pipeline stage is doing useful
work.

Q5 (15 marks)
Consider the following loops written in C programming language:

for(int i = 0; i < a; i++)
for(int j = 0; j < b; j++)

A[j * 4] = i + j;

4



The values of a, b, i and j are in registers t0, t1, t2 and t3, respectively. The register a0
holds the base address of the array A. Translate to the corresponding RISC-V assembly code.

Answer:

LOOPI:
addi t2, zero, 0 # init: i = 0
bge t2, t0, ENDI # while i < a
addi t4, a0, 0 # t4 = &A
addi t3, zero, 0 # init: j = 0
LOOPJ:
bge t3, t1, ENDJ # while j < b
add t5, t2, t3 # t5 = i + j
sd t5, 0(t4) # A[j * 4] = i + j
addi t4, t4, 16 # t4 = &A[4 * (j + 1)]
addi j, j, 1 # j++
jal zero, LOOPJ
ENDJ:
addi t2, t2, 1 # i++
jal zero, LOOPI
ENDI

Q6 (15 marks) There is a computer that has a 64MB byte-addressable main memory. Instructions
and data are stored in separated caches, each of which has eight 64B cache lines. The data
cache uses direct-mapping. Now there are two programs in the following form.

Program A:

int a[64][64];
int sum_array1() {

int i, j, sum = 0;
for(i = 0; i < 64; i++)

for(j = 0; j < 64; j++)
sum += a[i][j];

return sum;
}

Program B:

int a[64][64];
int sum_array1() {

int i, j, sum = 0;
for(j = 0; j < 64; j++)

for(i = 0; i < 64; i++)
sum += a[i][j];

return sum;
}

Suppose int data is represented in 32-bit 2’s complement and i, j, sum are stored in specific
registers. Arrays are stored in row-major with the start address NUM 310 (i.e., NUM 3 in
decimal) in the main memory. Answer the following questions.

1. What are the line numbers of the main memory blocks that contain a[0][31] and
a[2][2] respectively? (Cache line number starts from 0)

5



2. What are the data cache hit rates of program A and B?

Answer:

1. a. NUM 3+31×4 = var, var
64 = result.

b. NUM 3+(64×2+2)×4 = var1, var1
64 = var2, var2 mod 8 = result

2. The size of array a is 64×64×4 = 214B. Since the size of a block is 64B, it takes 28 main
memory blocks to store it. Under the condition of row-major, 28 times of cache miss will
appear. Therefore, the hit rate of program A is (212−28)

212 = 93.75%. For program B, the hit
rate is 0.

Q7 (5 marks)
Describe two cache replacement strategies.

1. Write-through

2. Write-back

Answer:

1. It always write the data into both the cache block and the next level RAM in the memory
hierarchy.

2. It writes to the memory hierarchy when the cache block is evicted.

Q8 (15 marks)
The following table shows the different instructions ratios

Table 1: Instruction mix

R-type I-type (non-Id) Load Store Branch Jump
2×NUM 1 25% 22% 8% 45%−3×NUM 1 NUM 1

1. What fraction of all instructions use the data memory?

2. What fraction of all instructions use the instruction memory?

3. What fraction of all instructions use the sign extend?

4. What is the sign extend doing during cycles in whih its output is not needed?

Answer:

1. Only Load and Store use data memory. 30%

2. 100%

3. Only R-type instructions do not use the Sign extender. 1−2×NUM 1

4. The sign extend produces an output during every cycle. If its output is not needed, it is
simply ignored.

Q9 (10 marks)
Given the following specifications of the datapath latencies:

6



Table 2: Specification of the datapath latencies (unit: ps)

Stages IF ID EX MEM WB
Latencies (ps) NUM 2 NUM 3 550 800 600

1. What is the clock cycle time in a pipelined and non-pipelined processor?

2. What is the total latency of an lw instruction in a pipelined and non-pipelined processor?

3. If we can split one stage of the pipelined datapath into two new stages, each with half the
latency of the original stage, which stage would you split and what is the new clock cycle
time of the processor?

Answer:

1. Non-pipelined (sum of all stages): NUM 2+NUM 3+550+800+600 ps; Pipelined (the
slowest stage): max{NUM 3,800} ps.

2. The instruction lw takes all five stages. Non-pipelined: NUM 2+NUM 3+ 550+ 800+
600 ps; Pipelined (takes five stages at the slowest cycle): max{NUM 3,800}×5 ps.

3. Split ID / MEM stage (find what is the slowest). If you split ID, and then the new
clock cycle will be 800 ps. If you split MEM, and then the new clock cycle will be
max{NUM 3,600} ps.

7


