
CENG3420
Lab 1-1: MIPS assembly language programing

Haoyu Yang

Department of Computer Science and Engineering
The Chinese University of Hong Kong

hyyang@cse.cuhk.edu.hk

Spring 2020

1 / 18

mailto:hyyang@cse.cuhk.edu.hk

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

2 / 18

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

3 / 18

What is SPIM

I SPIM is a MIPS32 simulator.
I Spim is a self-contained simulator that runs MIPS32 programs.
I It reads and executes assembly language programs written for this processor.
I Spim also provides a simple debugger and minimal set of operating system services.
I Spim does not execute binary (compiled) programs.

Dowload it here:
http://sourceforge.net/projects/spimsimulator/files/

3 / 18

http://sourceforge.net/projects/spimsimulator/files/

SPIM Overview

What SPIM looks like.
4 / 18

Register Panel and Memory Panel

There’s also a console window.
5 / 18

Operations

I Load a source file: File → Reinitialize and Load File
I Run the code: F5 or Press the green triangle button
I Single stepping: F10
I Breakpoint: in Text panel, right click on an address to set a breakpoint there.

6 / 18

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

7 / 18

Registers

I 32 general-purpose registers
I register preceded by $ in assembly language instruction
I two formats for addressing:

I using register number e.g. $0 through $31
I using equivalent names e.g. $t1, $sp

I special registers Lo and Hi used to store result of multiplication and division
I not directly addressable; contents accessed with special instruction mfhi (“move from

Hi”) and mflo (“move from Lo”)

7 / 18

Register Names and Descriptions

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

8 / 18

Data Types and Literals

Data types:
I Instructions are all 32 bits
I byte(8 bits), halfword (2 bytes), word (4 bytes)
I a character requires 1 byte of storage
I an integer requires 1 word (4 bytes) of storage
I Data types: .asciiz for string, .word for int, ...

Literals:
I numbers entered as is. e.g. 4
I characters enclosed in single quotes. e.g. ‘b’
I strings enclosed in double quotes. e.g. “A string”

9 / 18

Program Structure I
I Just plain text file with data declarations, program code (name of file should end in

suffix .s to be used with SPIM simulator)
I Data declaration section followed by program code section

Data Declarations

I Identified with assembler directive .data.
I Declares variable names used in program
I Storage allocated in main memory (RAM)
I <name>: .<datatype> <value>

10 / 18

Program Structure II
Code

I placed in section of text identified with assembler directive .text
I contains program code (instructions)
I starting point for code e.g. execution given label main:
I ending point of main code should use exit system call

Comments
anything following # on a line

11 / 18

Program Structure III

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.s
Bare-bones outline of MIPS assembly language program

.globl main

.data # variable declarations follow this line
...

.text # instructions follow this line

main: # indicates start of code
...

End of program, leave a blank line afterwards

12 / 18

An Example Program

I li: load immediate
I la: load address
I lw: load word from memory

13 / 18

More Information

For more information about MIPS instructions and assembly programing you can refer to:
1. Lecture slides and textbook.
2. http:

//www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

14 / 18

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

15 / 18

System calls in SPIM I
SPIM provides a small set of operating system-like services through the system call
(syscall) instruction.

15 / 18

System calls in SPIM II

To request a service, a program loads the system call code into register $v0 and arguments
into registers $a0-$a3(or $f12 for floating-point values). System calls that return values
put their results in register $v0 (or $f0 for floating-point results). Like this example:

Using system call

.data
str: .asciiz "the answer = " #labels always followed by colon

.text

li $v0, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string
li $v0, 1 # system call code for print_int
li $a0, 5 # integer to print
syscall # print it

16 / 18

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

17 / 18

Lab Assignment

Write an assembly program with the following requirements:
1. Define two variables var1 and var2 which have initial value 15 and 19, respectively.
2. Print RAM addresses of var1 and var2 using syscall.
3. Increase var1 by 1 and multiply var2 by 4.
4. Print var1 and var2.
5. Swap var1 and var2 and print them.

Submission Method:
Submit the source code and report after the whole Lab1, onto blackboard.

17 / 18

Some Tips

1. Variables should be declared following the .data identifier.
2. <name>: .<datatype> <value>

3. Use la instruction to access the RAM address of declared data.
4. Use system call to print integers.
5. Do not forget exit system call.

18 / 18

	Main Talk
	SPIM
	Assembly Programing
	System Service in SPIM
	Lab Assignment

