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Outline
q Pipeline Motivations
q Pipeline Hazards 
q Exceptions
q Background: Flip-Flop Control Signals
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Review: Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total
R-
type
load
store
beq
jump

4 1 2 1 8

4 1 2 4 1 12

q Calculate cycle time assuming negligible delays (for 
muxes, control unit, sign extend, PC access, shift left 2, 
wires) except:

! Instruction and Data Memory (4 ns)
! ALU and adders (2 ns)
! Register File access (reads or writes) (1 ns)

4 1 2 4 11
4 1 2 7
4 4
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Review: Single Cycle Disadvantages & Advantages
q Uses the clock cycle inefficiently – the clock cycle 

must be timed to accommodate the slowest instr
! especially problematic for more complex instructions like 

floating point multiply

q May be wasteful of area since some functional units 
(e.g., adders) must be duplicated since they can 
not be shared during a clock cycle

but
q It is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2
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How Can We Make It Faster?
q Start fetching and executing the next instruction 

before the current one has completed
! Pipelining – (all?) modern processors are pipelined for 

performance
! Remember the performance equation:                                              

CPU time = CPI * CC * IC
q Under ideal conditions and with a large number of 

instructions, the speedup from pipelining is 
approximately equal to the number of pipe stages
! A five stage pipeline is nearly five times faster because the 

CC is “nearly” five times faster

q Fetch (and execute) more than one instruction at a time
! Superscalar processing – stay tuned
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The Five Stages of Load Instruction

q IFetch: Instruction Fetch and Update PC
q Dec: Registers Fetch and Instruction Decode
q Exec: Execute R-type; calculate memory 

address
q Mem: Read/write the data from/to the Data 

Memory
q WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw
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A Pipelined MIPS Processor
q Start the next instruction before the current one has completed

! improves throughput - total amount of work done in a given time
! instruction latency (execution time, delay time, response time -

time from the start of an instruction to its completion) is not
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Cycle 7Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some stages don’t need the whole clock cycle (e.g., WB)
- for some instructions, some stages are wasted cycles (i.e., 

nothing is done during that cycle for that instruction)
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Single Cycle versus Pipeline

lw IFetch Dec Exec Mem WB
Pipeline Implementation (CC = 200 ps):

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

q To complete an entire instruction in the pipelined case 
takes 1000 ps (as compared to 800 ps for the single 
cycle case).  Why ?

q How long does each take to complete 1,000,000 adds ?

400 ps
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Pipelining the MIPS ISA

q What makes it easy
! all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage
! few instruction formats (three) with symmetry across 

formats
- can begin reading register file in 2nd stage

! memory operations occur only in loads and stores
- can use the execute stage to calculate memory addresses

! each  instruction writes at most one result (i.e., changes 
the machine state) and does it in the last few pipeline 
stages (MEM or WB)

! operands must be aligned in memory so a single data 
transfer takes only one data memory access
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MIPS Pipeline Datapath Additions/Mods
q State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX EX/MEM

MEM/WB

System Clock
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MIPS Pipeline Control Path Modifications
q All control signals can be determined during Decode

! and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

RegWrite

MemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc
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Pipeline Control
q IF Stage:  read Instr Memory (always asserted) and write 

PC (on System Clock)
q ID Stage:  no optional control signals to set

EX Stage MEM Stage WB Stage
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Brch Mem
Read

Mem
Write

Reg
Write

Mem 
toReg

R 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
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Graphically Representing MIPS Pipeline

q Can help with answering questions like:
! How many cycles does it take to execute this code?
! What is the ALU doing during cycle 4?
! Is there a hazard, why does it occur, and how can it be 

fixed?

A
LUIM Reg DM Reg



CENG3420  L06.15 Spring 2020

Other Pipeline Structures Are Possible
q What about the (slow) multiply operation?

! Make the clock twice as slow or …
! let it take two cycles (since it doesn’t use the DM stage)

A
LUIM Reg DM Reg

MUL

A
LUIM Reg DM1 RegDM2

q What if the data memory access is twice as slow as 
the instruction memory?
! make the clock twice as slow or …
! let data memory access take two cycles (and keep the same 

clock rate)
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Other Sample Pipeline Alternatives

q ARM7

q XScale A
LUIM1 IM2 DM1 Reg

DM2

IM Reg EX

PC update
IM access

decode
reg

access

ALU op
DM access
shift/rotate
commit result

(write back)

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write
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Why Pipeline? For Performance!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Once the 
pipeline is full, 
one instruction 

is completed 
every cycle, so 

CPI = 1

Time to fill the pipeline
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Outline
q Pipeline Motivations
q Pipeline Hazards 
q Exceptions
q Background: Flip-Flop Control Signals
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Can Pipelining Get Us Into Trouble?
q Yes: Pipeline Hazards

! structural hazards: 
- a required resource is busy

! data hazards: 
- attempt to use data before it is ready

! control hazards: 
- deciding on control action depends on previous instruction

q Can usually resolve hazards by waiting
! pipeline control must detect the hazard
! and take action to resolve hazards
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Structure Hazards

q Conflict for use of a resource
q In MIPS pipeline with a single memory

! Load/store requires data access
! Instruction fetch requires instruction access

q Hence, pipeline datapaths require separate 
instruction/data memories
! Or separate instruction/data caches

q Since Register File
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I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Resolve Structural Hazard 1

Reading data from 
memory

Reading instruction 
from memory

q Fix with separate instr and data memories (I$ and D$)
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Resolve Structural Hazard 2

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix register file 
access hazard by 
doing reads in the 
second half of the 

cycle and writes in 
the first half

add $1,

add $2,$1,

clock edge that controls 
register writing

clock edge that controls 
loading of pipeline state 
registers
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Data Hazards: Register Usage
q Dependencies backward in time cause hazards

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9

q Read before write data hazard
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Data Hazards: Load Memory
q Dependencies backward in time cause hazards

I
n
s
t
r.

O
r
d
e
r

lw  $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Load-use data hazard
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stall

stall

Resolve Data Hazards 1: Insert Stall

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LUIM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Can fix data 
hazard by 

waiting – stall –
but impacts CPI
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Resolve Data Hazards 2: Forwarding

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix data hazards 
by forwarding

results as soon as 
they are available
to where they are 

needed
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9



CENG3420  L06.29 Spring 2020

Forward Unit Output Signals
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Datapath with Forwarding Hardware
PCSrc

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

Branch

Forward
Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd
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Data Forwarding Control Conditions
1. EX Forward Unit: 
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRs))

ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRt))

ForwardB = 10

Forwards the 
result from the 
previous instr. 
to either input 
of the ALU

Forwards the 
result from the 
second 
previous instr. 
to either input 
of the ALU

2. MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01
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Forwarding Illustration

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

EX forwarding MEM forwarding
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Yet Another Complication!
q Another potential data hazard can occur when there 

is a conflict between the result of the WB stage 
instruction and the MEM stage instruction – which 
should be forwarded?

I
n
s
t
r.

O
r
d
e
r

add $1,$1,$2

A
LUIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg
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EX: Corrected MEM Forward Unit
q MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRs)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRt)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01
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Memory-to-Memory Copies
q For loads immediately followed by stores (memory-

to-memory copies) can avoid a stall by adding 
forwarding hardware from the MEM/WB register to 
the data memory input.
! Would need to add a Forward Unit and a mux to the MEM 

stage

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)
A

LUIM Reg DM Reg

sw $1,4($3)

A
LUIM Reg DM Reg
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Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw  $1,4($2)

A
LUIM Reg DM Reg

A
LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Will still need one stall cycle even with forwarding

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9

sub $4,$1,$5
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stall

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw  $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or  $8,$1,$9
A

LUIM Reg DM Reg
A

LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Will still need one stall cycle even with forwarding
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Load-use Hazard Detection Unit (optional)
q Need a Hazard detection Unit in the ID stage that 

inserts a stall between the load and its use
1. ID Hazard detection Unit:
if (ID/EX.MemRead
and ((ID/EX.RegisterRt == IF/ID.RegisterRs)
or  (ID/EX.RegisterRt == IF/ID.RegisterRt)))
stall the pipeline

q The first line tests to see if the instruction now in the EX 
stage is a lw; the next two lines check to see if the 
destination register of the lw matches either source 
register of the instruction in the ID stage (the load-use 
instruction)

q After this one cycle stall, the forwarding logic can handle 
the remaining data hazards
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Adding the Hazard/Stall Hardware (optional)

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
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IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB
Control

ALU
cntrl

Branch

PCSrc

Forward
Unit
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Unit

0
1

ID/EX.RegisterRt

0

ID/EX.MemRead

PC.Write
IF/ID.Write
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Control Hazards
q When the flow of instruction addresses is not sequential 

(i.e., PC = PC + 4); incurred by change of flow instructions
! Unconditional branches (j, jal, jr)
! Conditional branches (beq, bne)
! Exceptions

q Possible approaches
! Stall (impacts CPI)
! Move decision point as early in the pipeline as possible, thereby 

reducing the number of stall cycles
! Delay decision (requires compiler support)
! Predict and hope for the best !

q Control hazards occur less frequently than data hazards, 
but there is nothing as effective against control hazards as 
forwarding is for data hazards
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flush

Control Hazards 1: Jumps Incur One Stall

q Fortunately, jumps are very infrequent – only 3% of the 
SPECint instruction mix

I
n
s
t
r.

O
r
d
e
r

j

j target
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Jumps not decoded until ID, so one flush is needed
! To flush, set IF.Flush to zero the instruction field of the IF/ID 

pipeline register (turning it into a nop)

Fix jump 
hazard by 
waiting –

flushA
LUIM Reg DM Reg
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Datapath Branch and Jump Hardware

ID/EX
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Supporting ID Stage Jumps

ID/EX

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU
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Control Hazards 2: Branch Instr
q Dependencies backward in time cause hazards

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg
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flush

flush

flush

One Way to “Fix” a Branch Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

A
LUIM Reg DM Reg

beq target

A
LUIM Reg DM Reg

A
LUInst 3 IM Reg DM

Fix branch 
hazard by 
waiting –

flush – but 
affects CPI

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg
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flush

Another Way to “Fix” a Branch Control Hazard
q Move branch decision hardware back to as early

in the pipeline as possible – i.e., during the 
decode cycle

I
n
s
t
r.

O
r
d
e
r

beq

beq target

A
LUIM Reg DM Reg

Inst 3

A
LUIM Reg DM

Fix branch 
hazard by 
waiting –

flush

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg
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Two “Types” of Stalls
q Nop instruction (or bubble) inserted between two 

instructions in the pipeline (as done for load-use 
situations)
! Keep the instructions earlier in the pipeline (later in the 

code) from progressing down the pipeline for a cycle 
(“bounce” them in place with write control signals)

! Insert nop by zeroing control bits in the pipeline register at 
the appropriate stage

! Let the instructions later in the pipeline (earlier in the code) 
progress normally down the pipeline

q Flushes (or instruction squashing) were an 
instruction in the pipeline is replaced with a nop
instruction (as done for instructions located 
sequentially after j instructions)
! Zero the control bits for the instruction to be flushed
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Reducing the Delay of Branches
q Move the branch decision hardware back to the EX stage

! Reduces the number of stall (flush) cycles to two
! Adds an and gate and a 2x1 mux to the EX timing path

q Add hardware to compute the branch target address and 
evaluate the branch decision to the ID stage
! Reduces the number of stall (flush) cycles to one

(like with jumps)
- But now need to add forwarding hardware in ID stage

! Computing branch target address can be done in parallel with 
RegFile read (done for all instructions – only used when needed)

! Comparing the registers can’t be done until after RegFile read, so 
comparing and updating the PC adds a mux, a comparator, and an 
and gate to the ID timing path

q For deeper pipelines, branch decision points can be even 
later in the pipeline, incurring more stalls
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ID Branch Forwarding Issues
q MEM/WB 

“forwarding” is taken 
care of by the normal 
RegFile write before 
read operation

WB add3   $1,
MEM add2   $3,
EX add1   $4,
ID beq    $1,$2,Loop
IF next_seq_instr

q Need to forward from the 
EX/MEM pipeline stage to 
the ID comparison 
hardware for cases like

WB add3   $3,
MEM add2   $1,
EX add1   $4,
ID beq    $1,$2,Loop
IF next_seq_instr

if (IDcontrol.Branch
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == IF/ID.RegisterRs))

ForwardC = 1
if (IDcontrol.Branch
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == IF/ID.RegisterRt))

ForwardD = 1

Forwards the 
result from the 

second 
previous instr. 
to either input 

of the compare
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ID Branch Forwarding Issues, con’t
q If the instruction immediately                                       

before the branch produces                                                  
one of the branch source                                                     
operands, then a stall needs                                             
to be inserted (between the                                                             
beq and add1) since the EX stage ALU operation is 
occurring at the same time as the ID stage branch 
compare operation

WB add3   $3,
MEM add2   $4,
EX add1   $1,
ID beq    $1,$2,Loop
IF next_seq_instr

! “Bounce” the beq (in ID) and next_seq_instr (in IF) in place 
(ID Hazard Unit deasserts PC.Write and IF/ID.Write) 

! Insert a stall between the add in the EX stage and the beq in 
the ID stage by zeroing the control bits going into the ID/EX 
pipeline register (done by the ID Hazard Unit)

q If the branch is found to be taken, then flush the 
instruction currently in IF (IF.Flush)
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Supporting ID Stage Branches (optional)
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Delayed Branches
q If the branch hardware has been moved to the ID 

stage, then we can eliminate all branch stalls with 
delayed branches which are defined as always 
executing the next sequential instruction after the 
branch instruction – the branch takes effect after that 
next instruction
! MIPS compiler moves an instruction to immediately after the 

branch that is not affected by the branch (a safe instruction) 
thereby hiding the branch delay

q With deeper pipelines, the branch delay grows requiring 
more than one delay slot
! Delayed branches have lost popularity compared to more 

expensive but more flexible (dynamic) hardware branch prediction 
! Growth in available transistors has made hardware branch 

prediction relatively cheaper



CENG3420  L06.57 Spring 2020

Scheduling Branch Delay Slots

q A is the best choice, fills delay slot and reduces IC
q In B and C, the sub instruction may need to be copied, increasing IC
q In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then

delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3
if $1=0 then

sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Static Branch Prediction
q Resolve branch hazards by assuming a given outcome 

and proceeding without waiting to see the actual branch 
outcome

1. Predict not taken – always predict branches will not be 
taken, continue to fetch from the sequential instruction 
stream, only when branch is taken does the pipeline stall
! If taken, flush instructions after the branch (earlier in the pipeline)

- in IF, ID, and EX stages if branch logic in MEM – three stalls
- In IF and ID stages if branch logic in EX – two stalls
- in IF stage if branch logic in ID – one stall

! ensure that those flushed instructions haven’t changed the 
machine state – automatic in the MIPS pipeline since machine 
state changing operations are at the tail end of the pipeline 
(MemWrite (in MEM) or RegWrite (in WB)) 

! restart the pipeline at the branch destination



CENG3420  L06.60 Spring 2020

flush

Flushing with Misprediction (Not Taken)

q To flush the IF stage instruction, assert IF.Flush
to zero the instruction field of the IF/ID pipeline 
register (transforming it into a nop)

4 beq $1,$2,2I
n
s
t
r.

O
r
d
e
r

A
LUIM Reg DM Reg

16 and $6,$1,$7

20 or  r8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg8 sub $4,$1,$5
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Branching Structures
q Predict not taken works well for “top of the loop” 

branching structures Loop: beq $1,$2,Out
1nd loop instr

.

.

.
last loop instr
j  Loop

Out:  fall out instr

! But such loops have jumps at the 
bottom of the loop to return to the 
top of the loop – and incur the 
jump stall overhead

q Predict not taken doesn’t work well for “bottom of the 
loop” branching structures Loop: 1st loop instr

2nd loop instr
.
.
.

last loop instr
bne $1,$2,Loop
fall out instr
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Static Branch Prediction, con’t
q Resolve branch hazards by assuming a given 

outcome and proceeding
2. Predict taken – predict branches will always be taken

! Predict taken always incurs one stall cycle (if branch 
destination hardware has been moved to the ID stage)

! Is there a way to “cache” the address of the branch target 
instruction ??

q As the branch penalty increases (for deeper pipelines), 
a simple static prediction scheme will hurt performance.  
With more hardware, it is possible to try to predict 
branch behavior dynamically during program execution

3. Dynamic branch prediction – predict branches at run-
time using run-time information
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Dynamic Branch Prediction
q A branch prediction buffer (aka branch history table 

(BHT)) in the IF stage addressed by the lower bits of 
the PC, contains bit(s) passed to the ID stage 
through the IF/ID pipeline register that tells whether 
the branch was taken the last time it was execute
! Prediction bit may predict incorrectly (may be a wrong 

prediction for this branch this iteration or may be from a 
different branch with the same low order PC bits) but the 
doesn’t affect correctness, just performance

- Branch decision occurs in the ID stage after determining that 
the fetched instruction is a branch and checking the prediction 
bit(s)

! If the prediction is wrong, flush the incorrect instruction(s) 
in pipeline, restart the pipeline with the right instruction, and 
invert the prediction bit(s)

- A 4096 bit BHT varies from 1% misprediction (nasa7, 
tomcatv) to 18% (eqntott)
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Branch Target Buffer
q The BHT predicts when a branch is taken, but does 

not tell where its taken to!
! A branch target buffer (BTB) in the IF stage caches the 

branch target address, but we also need to fetch the next 
sequential instruction.  The prediction bit in IF/ID selects 
which “next” instruction will be loaded into IF/ID at the next 
clock edge

- Would need a two read port                                                               
instruction memory

q If the prediction is correct, stalls can be avoided no matter 
which direction they go

! Or the BTB can cache the                                                                        
branch taken instruction while the 
instruction memory is fetching the 
next sequential instruction

Read
Address

Instruction
Memory

PC

0

BTB
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1-bit Prediction Accuracy
q A 1-bit predictor will be incorrect twice when not taken

q For 10 times through the loop we have a 80% prediction 
accuracy for a branch that is taken 90% of the time

! Assume predict_bit = 0 to start (indicating 
branch not taken) and loop control is at 
the bottom of the loop code

1. First time through the loop, the predictor 
mispredicts the branch since the branch is 
taken back to the top of the loop; invert 
prediction bit (predict_bit = 1)

2. As long as branch is taken (looping), 
prediction is correct

3. Exiting the loop, the predictor again 
mispredicts the branch since this time the 
branch is not taken falling out of the loop; 
invert prediction bit (predict_bit = 0)

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr
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2-bit Predictors
q A 2-bit scheme can give 90% accuracy since a prediction 

must be wrong twice before the prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken

Taken
Taken

Taken

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr

wrong on loop 
fall out

0

1 1

right 9 times

right on 1st

iteration
0

q BHT also 
stores the 
initial FSM 
state

1011

01
00
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Outline
q Pipeline Motivations
q Pipeline Hazards 
q Exceptions
q Background: Flip-Flop Control Signals
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Dealing with Exceptions
q Exceptions (aka interrupts) are just another form of 

control hazard.  Exceptions arise from
! R-type arithmetic overflow
! Trying to execute an undefined instruction
! An I/O device request
! An OS service request (e.g., a page fault, TLB exception)
! A hardware malfunction

q The pipeline has to stop executing the offending 
instruction in midstream, let all prior instructions 
complete, flush all following instructions, set a register to 
show the cause of the exception, save the address of the 
offending instruction, and then jump to a prearranged 
address (the address of the exception handler code)

q The software (OS) looks at the cause of the exception 
and “deals” with it
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Two Types of Exceptions
q Interrupts – asynchronous to program execution

! caused by external events 
! may be handled between instructions, so can let the 

instructions currently active in the pipeline complete before 
passing control to the OS interrupt handler

! simply suspend and resume user program

q Traps (Exception) – synchronous to program execution
! caused by internal events
! condition must be remedied by the trap handler for that

instruction, so much stop the offending instruction midstream
in the pipeline and pass control to the OS trap handler

! the offending instruction may be retried (or simulated by the 
OS) and the program may continue or it may be aborted
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Where in the Pipeline Exceptions Occur

q Arithmetic overflow

q Undefined instruction

q TLB or page fault

q I/O service request

q Hardware malfunction
A

LUIM Reg DM Reg

Stage(s)? Synchronous?

EX yes

yes

yes

no

no

q Beware that multiple exceptions can occur 
simultaneously in a single clock cycle

ID

IF, MEM

any

any
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Multiple Simultaneous Exceptions

I
n
s
t
r.

O
r
d
e
r

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

D$ page fault

arithmetic overflow

undefined instruction

I$ page fault

q Hardware sorts the exceptions so that the earliest 
instruction is the one interrupted first
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Additions to MIPS to Handle Exceptions (optional)
q Cause register (records exceptions) – hardware to record 

in Cause the exceptions and a signal to control writes to it 
(CauseWrite)

q EPC register (records the addresses of the offending 
instructions) – hardware to record in EPC the address of 
the offending instruction and a signal to control writes to it 
(EPCWrite)
! Exception software must match exception to instruction

q A way to load the PC with the address of the exception 
handler
! Expand the PC input mux where the new input is hardwired to 

the exception handler address - (e.g., 8000 0180hex for arithmetic 
overflow)

q A way to flush offending instruction and the ones that 
follow it
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Datapath with Controls for Exceptions (optional)

Read
Address

Instruction
Memory

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

RegFile

Read Data 1

ReadData 2

16

32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

BranchPCSrc

Forward
Unit

Hazard
Unit

0
10

C
om

pa
re

Forward
Unit

Add

IF
.F

lu
sh

0

8000 0180hex

Cause

EPC 

EX.Flush

0

0

ID.Flush
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Summary
q All modern day processors use pipelining for 

performance (a CPI of 1 and a fast CC)
q Pipeline clock rate limited by slowest pipeline stage –

so designing a balanced pipeline is important
q Must detect and resolve hazards

! Structural hazards – resolved by designing the pipeline 
correctly

! Data hazards
- Stall (impacts CPI)
- Forward (requires hardware support)

! Control hazards – put the branch decision hardware in as 
early a stage in the pipeline as possible

- Stall (impacts CPI)
- Delay decision (requires compiler support)
- Static and dynamic prediction (requires hardware support)

q Pipelining complicates exception handling
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Outline
q Pipeline Motivations
q Pipeline Hazards 
q Exceptions
q Background: Flip-Flop Control Signals
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Clocking Methodologies
q Clocking methodology defines when signals can 

be read and when they can be written
falling (negative) edge

rising (positive) edgeclock cycle

clock rate = 1/(clock cycle)
e.g., 10 nsec clock cycle = 100 MHz clock rate

1 nsec clock cycle = 1 GHz clock rate

q State element design choices
! level sensitive latch
! master-slave and edge-triggered flipflops
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Review:Latches vs Flipflops
q Output is equal to the stored value inside the 

element 
q Change of state (value) is based on the clock

! Latches:  output changes whenever the inputs change 
and the clock is asserted (level sensitive methodology)

- Two-sided timing constraint
! Flip-flop:  output changes only on a clock edge (edge-

triggered methodology)
- One-sided timing constraint

A clocking methodology defines when signals can 
be read and written – would NOT want to read a 

signal at the same time it was being written 
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Review: Design A Latch
q Store one bit of information: cross-coupled invertor

q How to change the value stored?

=

SR-Latch

other Latch structures

R: reset signal
S: set signal
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Review: Design A Flip-Flop
q Based on Gated Latch

q Master-slave positive-edge-triggered D flip-flop 

=
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Review: Latch and Flip-Flop
q Latch is level-sensitive
q Flip-flop is edge triggered
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Our Implementation
q An edge-triggered methodology
q Typical execution

! read contents of some state elements 
! send values through some combinational logic
! write results to one or more state elements

State
element

1

State
element

2

Combinational
logic

clock

one clock cycle

q Assumes state elements are written on every clock 
cycle; if not, need explicit write control signal
! write occurs only when both the write control is asserted 

and the clock edge occurs


