
CENG3420 L06.1 Spring 2020

CENG 3420
Lecture 06: Pipeline

Bei Yu
byu@cse.cuhk.edu.hk

CENG3420 L06.2 Spring 2020

Outline
q Pipeline Motivations
q Pipeline Hazards
q Exceptions
q Background: Flip-Flop Control Signals

CENG3420 L06.3 Spring 2020

Outline
q Pipeline Motivations
q Pipeline Hazards
q Exceptions
q Background: Flip-Flop Control Signals

CENG3420 L06.4 Spring 2020

Review: Instruction Critical Paths

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total
R-
type
load
store
beq
jump

4 1 2 1 8

4 1 2 4 1 12

q Calculate cycle time assuming negligible delays (for
muxes, control unit, sign extend, PC access, shift left 2,
wires) except:

! Instruction and Data Memory (4 ns)
! ALU and adders (2 ns)
! Register File access (reads or writes) (1 ns)

4 1 2 4 11
4 1 2 7
4 4

CENG3420 L06.5 Spring 2020

Review: Single Cycle Disadvantages & Advantages
q Uses the clock cycle inefficiently – the clock cycle

must be timed to accommodate the slowest instr
! especially problematic for more complex instructions like

floating point multiply

q May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can
not be shared during a clock cycle

but
q It is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

CENG3420 L06.6 Spring 2020

How Can We Make It Faster?
q Start fetching and executing the next instruction

before the current one has completed
! Pipelining – (all?) modern processors are pipelined for

performance
! Remember the performance equation:

CPU time = CPI * CC * IC
q Under ideal conditions and with a large number of

instructions, the speedup from pipelining is
approximately equal to the number of pipe stages
! A five stage pipeline is nearly five times faster because the

CC is “nearly” five times faster

q Fetch (and execute) more than one instruction at a time
! Superscalar processing – stay tuned

CENG3420 L06.7 Spring 2020

The Five Stages of Load Instruction

q IFetch: Instruction Fetch and Update PC
q Dec: Registers Fetch and Instruction Decode
q Exec: Execute R-type; calculate memory

address
q Mem: Read/write the data from/to the Data

Memory
q WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

CENG3420 L06.8 Spring 2020

A Pipelined MIPS Processor
q Start the next instruction before the current one has completed

! improves throughput - total amount of work done in a given time
! instruction latency (execution time, delay time, response time -

time from the start of an instruction to its completion) is not
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Cycle 7Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some stages don’t need the whole clock cycle (e.g., WB)
- for some instructions, some stages are wasted cycles (i.e.,

nothing is done during that cycle for that instruction)

CENG3420 L06.9 Spring 2020

Single Cycle versus Pipeline

lw IFetch Dec Exec Mem WB
Pipeline Implementation (CC = 200 ps):

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

q To complete an entire instruction in the pipelined case
takes 1000 ps (as compared to 800 ps for the single
cycle case). Why ?

q How long does each take to complete 1,000,000 adds ?

400 ps

CENG3420 L06.10 Spring 2020

Pipelining the MIPS ISA

q What makes it easy
! all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage
! few instruction formats (three) with symmetry across

formats
- can begin reading register file in 2nd stage

! memory operations occur only in loads and stores
- can use the execute stage to calculate memory addresses

! each instruction writes at most one result (i.e., changes
the machine state) and does it in the last few pipeline
stages (MEM or WB)

! operands must be aligned in memory so a single data
transfer takes only one data memory access

CENG3420 L06.11 Spring 2020

MIPS Pipeline Datapath Additions/Mods
q State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM:
MemAccess

WB:
WriteBack

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX EX/MEM

MEM/WB

System Clock

CENG3420 L06.12 Spring 2020

MIPS Pipeline Control Path Modifications
q All control signals can be determined during Decode

! and held in the state registers between pipeline stages

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

RegWrite

MemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc

CENG3420 L06.13 Spring 2020

Pipeline Control
q IF Stage: read Instr Memory (always asserted) and write

PC (on System Clock)
q ID Stage: no optional control signals to set

EX Stage MEM Stage WB Stage
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Brch Mem
Read

Mem
Write

Reg
Write

Mem
toReg

R 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

CENG3420 L06.14 Spring 2020

Graphically Representing MIPS Pipeline

q Can help with answering questions like:
! How many cycles does it take to execute this code?
! What is the ALU doing during cycle 4?
! Is there a hazard, why does it occur, and how can it be

fixed?

A
LUIM Reg DM Reg

CENG3420 L06.15 Spring 2020

Other Pipeline Structures Are Possible
q What about the (slow) multiply operation?

! Make the clock twice as slow or …
! let it take two cycles (since it doesn’t use the DM stage)

A
LUIM Reg DM Reg

MUL

A
LUIM Reg DM1 RegDM2

q What if the data memory access is twice as slow as
the instruction memory?
! make the clock twice as slow or …
! let data memory access take two cycles (and keep the same

clock rate)

CENG3420 L06.16 Spring 2020

Other Sample Pipeline Alternatives

q ARM7

q XScale A
LUIM1 IM2 DM1 Reg

DM2

IM Reg EX

PC update
IM access

decode
reg

access

ALU op
DM access
shift/rotate
commit result

(write back)

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write

CENG3420 L06.17 Spring 2020

Why Pipeline? For Performance!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Once the
pipeline is full,
one instruction

is completed
every cycle, so

CPI = 1

Time to fill the pipeline

CENG3420 L06.18 Spring 2020

Outline
q Pipeline Motivations
q Pipeline Hazards
q Exceptions
q Background: Flip-Flop Control Signals

CENG3420 L06.19 Spring 2020

Can Pipelining Get Us Into Trouble?
q Yes: Pipeline Hazards

! structural hazards:
- a required resource is busy

! data hazards:
- attempt to use data before it is ready

! control hazards:
- deciding on control action depends on previous instruction

q Can usually resolve hazards by waiting
! pipeline control must detect the hazard
! and take action to resolve hazards

CENG3420 L06.20 Spring 2020

Structure Hazards

q Conflict for use of a resource
q In MIPS pipeline with a single memory

! Load/store requires data access
! Instruction fetch requires instruction access

q Hence, pipeline datapaths require separate
instruction/data memories
! Or separate instruction/data caches

q Since Register File

CENG3420 L06.21 Spring 2020

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Resolve Structural Hazard 1

Reading data from
memory

Reading instruction
from memory

q Fix with separate instr and data memories (I$ and D$)

CENG3420 L06.22 Spring 2020

Resolve Structural Hazard 2

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 1

Inst 2

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix register file
access hazard by
doing reads in the
second half of the

cycle and writes in
the first half

add $1,

add $2,$1,

clock edge that controls
register writing

clock edge that controls
loading of pipeline state
registers

CENG3420 L06.24 Spring 2020

Data Hazards: Register Usage
q Dependencies backward in time cause hazards

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

q Read before write data hazard

CENG3420 L06.25 Spring 2020

Data Hazards: Load Memory
q Dependencies backward in time cause hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Load-use data hazard

CENG3420 L06.26 Spring 2020

stall

stall

Resolve Data Hazards 1: Insert Stall

I
n
s
t
r.

O
r
d
e
r

add $1,

A
LUIM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Can fix data
hazard by

waiting – stall –
but impacts CPI

CENG3420 L06.28 Spring 2020

Resolve Data Hazards 2: Forwarding

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Fix data hazards
by forwarding

results as soon as
they are available
to where they are

needed
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CENG3420 L06.29 Spring 2020

Forward Unit Output Signals

CENG3420 L06.31 Spring 2020

Datapath with Forwarding Hardware
PCSrc

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

Branch

Forward
Unit

ID/EX.RegisterRt

ID/EX.RegisterRs

EX/MEM.RegisterRd

MEM/WB.RegisterRd

CENG3420 L06.32 Spring 2020

Data Forwarding Control Conditions
1. EX Forward Unit:
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRs))

ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRt))

ForwardB = 10

Forwards the
result from the
previous instr.
to either input
of the ALU

Forwards the
result from the
second
previous instr.
to either input
of the ALU

2. MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01

CENG3420 L06.33 Spring 2020

Forwarding Illustration

I
n
s
t
r.

O
r
d
e
r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

EX forwarding MEM forwarding

CENG3420 L06.35 Spring 2020

Yet Another Complication!
q Another potential data hazard can occur when there

is a conflict between the result of the WB stage
instruction and the MEM stage instruction – which
should be forwarded?

I
n
s
t
r.

O
r
d
e
r

add $1,$1,$2

A
LUIM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

CENG3420 L06.36 Spring 2020

EX: Corrected MEM Forward Unit
q MEM Forward Unit:
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRs)
and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (EX/MEM.RegisterRd != ID/EX.RegisterRt)
and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

ForwardB = 01

CENG3420 L06.37 Spring 2020

Memory-to-Memory Copies
q For loads immediately followed by stores (memory-

to-memory copies) can avoid a stall by adding
forwarding hardware from the MEM/WB register to
the data memory input.
! Would need to add a Forward Unit and a mux to the MEM

stage

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)
A

LUIM Reg DM Reg

sw $1,4($3)

A
LUIM Reg DM Reg

CENG3420 L06.39 Spring 2020

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

A
LUIM Reg DM Reg

A
LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Will still need one stall cycle even with forwarding

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

sub $4,$1,$5

CENG3420 L06.40 Spring 2020

stall

Forwarding with Load-use Data Hazards

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

LUIM Reg DM Reg
A

LUIM Reg DM

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Will still need one stall cycle even with forwarding

CENG3420 L06.41 Spring 2020

Load-use Hazard Detection Unit (optional)
q Need a Hazard detection Unit in the ID stage that

inserts a stall between the load and its use
1. ID Hazard detection Unit:
if (ID/EX.MemRead
and ((ID/EX.RegisterRt == IF/ID.RegisterRs)
or (ID/EX.RegisterRt == IF/ID.RegisterRt)))
stall the pipeline

q The first line tests to see if the instruction now in the EX
stage is a lw; the next two lines check to see if the
destination register of the lw matches either source
register of the instruction in the ID stage (the load-use
instruction)

q After this one cycle stall, the forwarding logic can handle
the remaining data hazards

CENG3420 L06.43 Spring 2020

Adding the Hazard/Stall Hardware (optional)

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB
Control

ALU
cntrl

Branch

PCSrc

Forward
Unit

Hazard
Unit

0
1

ID/EX.RegisterRt

0

ID/EX.MemRead

PC.Write
IF/ID.Write

CENG3420 L06.44 Spring 2020

Control Hazards
q When the flow of instruction addresses is not sequential

(i.e., PC = PC + 4); incurred by change of flow instructions
! Unconditional branches (j, jal, jr)
! Conditional branches (beq, bne)
! Exceptions

q Possible approaches
! Stall (impacts CPI)
! Move decision point as early in the pipeline as possible, thereby

reducing the number of stall cycles
! Delay decision (requires compiler support)
! Predict and hope for the best !

q Control hazards occur less frequently than data hazards,
but there is nothing as effective against control hazards as
forwarding is for data hazards

CENG3420 L06.45 Spring 2020

flush

Control Hazards 1: Jumps Incur One Stall

q Fortunately, jumps are very infrequent – only 3% of the
SPECint instruction mix

I
n
s
t
r.

O
r
d
e
r

j

j target
A

LUIM Reg DM Reg

A
LUIM Reg DM Reg

q Jumps not decoded until ID, so one flush is needed
! To flush, set IF.Flush to zero the instruction field of the IF/ID

pipeline register (turning it into a nop)

Fix jump
hazard by
waiting –

flushA
LUIM Reg DM Reg

CENG3420 L06.46 Spring 2020

Datapath Branch and Jump Hardware

ID/EX

Read
Address

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

EX/MEM

MEM/WB

Control

ALU
cntrl

Forward
Unit

Branch

PCSrc

Shift
left 2

Add

Shift
left 2

Jump

PC+4[31-28]

Instruction
Memory

CENG3420 L06.47 Spring 2020

Supporting ID Stage Jumps

ID/EX

Read
Address

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

16 32

ALU

Data
Memory

Address

Write Data

Read
Data

IF/ID

Sign
Extend

EX/MEM

MEM/WB

Control

ALU
cntrl

Forward
Unit

Branch

PCSrc

Shift
left 2

Add

Shift
left 2

Jump

PC+4[31-28]

0

CENG3420 L06.48 Spring 2020

Control Hazards 2: Branch Instr
q Dependencies backward in time cause hazards

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

CENG3420 L06.49 Spring 2020

flush

flush

flush

One Way to “Fix” a Branch Control Hazard

I
n
s
t
r.

O
r
d
e
r

beq

A
LUIM Reg DM Reg

beq target

A
LUIM Reg DM Reg

A
LUInst 3 IM Reg DM

Fix branch
hazard by
waiting –

flush – but
affects CPI

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

CENG3420 L06.50 Spring 2020

flush

Another Way to “Fix” a Branch Control Hazard
q Move branch decision hardware back to as early

in the pipeline as possible – i.e., during the
decode cycle

I
n
s
t
r.

O
r
d
e
r

beq

beq target

A
LUIM Reg DM Reg

Inst 3

A
LUIM Reg DM

Fix branch
hazard by
waiting –

flush

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

CENG3420 L06.51 Spring 2020

Two “Types” of Stalls
q Nop instruction (or bubble) inserted between two

instructions in the pipeline (as done for load-use
situations)
! Keep the instructions earlier in the pipeline (later in the

code) from progressing down the pipeline for a cycle
(“bounce” them in place with write control signals)

! Insert nop by zeroing control bits in the pipeline register at
the appropriate stage

! Let the instructions later in the pipeline (earlier in the code)
progress normally down the pipeline

q Flushes (or instruction squashing) were an
instruction in the pipeline is replaced with a nop
instruction (as done for instructions located
sequentially after j instructions)
! Zero the control bits for the instruction to be flushed

CENG3420 L06.52 Spring 2020

Reducing the Delay of Branches
q Move the branch decision hardware back to the EX stage

! Reduces the number of stall (flush) cycles to two
! Adds an and gate and a 2x1 mux to the EX timing path

q Add hardware to compute the branch target address and
evaluate the branch decision to the ID stage
! Reduces the number of stall (flush) cycles to one

(like with jumps)
- But now need to add forwarding hardware in ID stage

! Computing branch target address can be done in parallel with
RegFile read (done for all instructions – only used when needed)

! Comparing the registers can’t be done until after RegFile read, so
comparing and updating the PC adds a mux, a comparator, and an
and gate to the ID timing path

q For deeper pipelines, branch decision points can be even
later in the pipeline, incurring more stalls

CENG3420 L06.53 Spring 2020

ID Branch Forwarding Issues
q MEM/WB

“forwarding” is taken
care of by the normal
RegFile write before
read operation

WB add3 $1,
MEM add2 $3,
EX add1 $4,
ID beq $1,$2,Loop
IF next_seq_instr

q Need to forward from the
EX/MEM pipeline stage to
the ID comparison
hardware for cases like

WB add3 $3,
MEM add2 $1,
EX add1 $4,
ID beq $1,$2,Loop
IF next_seq_instr

if (IDcontrol.Branch
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == IF/ID.RegisterRs))

ForwardC = 1
if (IDcontrol.Branch
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == IF/ID.RegisterRt))

ForwardD = 1

Forwards the
result from the

second
previous instr.
to either input

of the compare

CENG3420 L06.54 Spring 2020

ID Branch Forwarding Issues, con’t
q If the instruction immediately

before the branch produces
one of the branch source
operands, then a stall needs
to be inserted (between the
beq and add1) since the EX stage ALU operation is
occurring at the same time as the ID stage branch
compare operation

WB add3 $3,
MEM add2 $4,
EX add1 $1,
ID beq $1,$2,Loop
IF next_seq_instr

! “Bounce” the beq (in ID) and next_seq_instr (in IF) in place
(ID Hazard Unit deasserts PC.Write and IF/ID.Write)

! Insert a stall between the add in the EX stage and the beq in
the ID stage by zeroing the control bits going into the ID/EX
pipeline register (done by the ID Hazard Unit)

q If the branch is found to be taken, then flush the
instruction currently in IF (IF.Flush)

CENG3420 L06.55 Spring 2020

Supporting ID Stage Branches (optional)

Read
Address

Instruction
Memory

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

RegFile

Read Data 1

ReadData 2

16

32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

BranchPCSrc

Forward
Unit

Hazard
Unit

C
om

pa
re

Forward
Unit

Add

IF
.F

lu
sh

0

0
10

CENG3420 L06.56 Spring 2020

Delayed Branches
q If the branch hardware has been moved to the ID

stage, then we can eliminate all branch stalls with
delayed branches which are defined as always
executing the next sequential instruction after the
branch instruction – the branch takes effect after that
next instruction
! MIPS compiler moves an instruction to immediately after the

branch that is not affected by the branch (a safe instruction)
thereby hiding the branch delay

q With deeper pipelines, the branch delay grows requiring
more than one delay slot
! Delayed branches have lost popularity compared to more

expensive but more flexible (dynamic) hardware branch prediction
! Growth in available transistors has made hardware branch

prediction relatively cheaper

CENG3420 L06.57 Spring 2020

Scheduling Branch Delay Slots

q A is the best choice, fills delay slot and reduces IC
q In B and C, the sub instruction may need to be copied, increasing IC
q In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

CENG3420 L06.58 Spring 2020

Static Branch Prediction
q Resolve branch hazards by assuming a given outcome

and proceeding without waiting to see the actual branch
outcome

1. Predict not taken – always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline stall
! If taken, flush instructions after the branch (earlier in the pipeline)

- in IF, ID, and EX stages if branch logic in MEM – three stalls
- In IF and ID stages if branch logic in EX – two stalls
- in IF stage if branch logic in ID – one stall

! ensure that those flushed instructions haven’t changed the
machine state – automatic in the MIPS pipeline since machine
state changing operations are at the tail end of the pipeline
(MemWrite (in MEM) or RegWrite (in WB))

! restart the pipeline at the branch destination

CENG3420 L06.60 Spring 2020

flush

Flushing with Misprediction (Not Taken)

q To flush the IF stage instruction, assert IF.Flush
to zero the instruction field of the IF/ID pipeline
register (transforming it into a nop)

4 beq $1,$2,2I
n
s
t
r.

O
r
d
e
r

A
LUIM Reg DM Reg

16 and $6,$1,$7

20 or r8,$1,$9

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg8 sub $4,$1,$5

CENG3420 L06.61 Spring 2020

Branching Structures
q Predict not taken works well for “top of the loop”

branching structures Loop: beq $1,$2,Out
1nd loop instr

.

.

.
last loop instr
j Loop

Out: fall out instr

! But such loops have jumps at the
bottom of the loop to return to the
top of the loop – and incur the
jump stall overhead

q Predict not taken doesn’t work well for “bottom of the
loop” branching structures Loop: 1st loop instr

2nd loop instr
.
.
.

last loop instr
bne $1,$2,Loop
fall out instr

CENG3420 L06.62 Spring 2020

Static Branch Prediction, con’t
q Resolve branch hazards by assuming a given

outcome and proceeding
2. Predict taken – predict branches will always be taken

! Predict taken always incurs one stall cycle (if branch
destination hardware has been moved to the ID stage)

! Is there a way to “cache” the address of the branch target
instruction ??

q As the branch penalty increases (for deeper pipelines),
a simple static prediction scheme will hurt performance.
With more hardware, it is possible to try to predict
branch behavior dynamically during program execution

3. Dynamic branch prediction – predict branches at run-
time using run-time information

CENG3420 L06.63 Spring 2020

Dynamic Branch Prediction
q A branch prediction buffer (aka branch history table

(BHT)) in the IF stage addressed by the lower bits of
the PC, contains bit(s) passed to the ID stage
through the IF/ID pipeline register that tells whether
the branch was taken the last time it was execute
! Prediction bit may predict incorrectly (may be a wrong

prediction for this branch this iteration or may be from a
different branch with the same low order PC bits) but the
doesn’t affect correctness, just performance

- Branch decision occurs in the ID stage after determining that
the fetched instruction is a branch and checking the prediction
bit(s)

! If the prediction is wrong, flush the incorrect instruction(s)
in pipeline, restart the pipeline with the right instruction, and
invert the prediction bit(s)

- A 4096 bit BHT varies from 1% misprediction (nasa7,
tomcatv) to 18% (eqntott)

CENG3420 L06.64 Spring 2020

Branch Target Buffer
q The BHT predicts when a branch is taken, but does

not tell where its taken to!
! A branch target buffer (BTB) in the IF stage caches the

branch target address, but we also need to fetch the next
sequential instruction. The prediction bit in IF/ID selects
which “next” instruction will be loaded into IF/ID at the next
clock edge

- Would need a two read port
instruction memory

q If the prediction is correct, stalls can be avoided no matter
which direction they go

! Or the BTB can cache the
branch taken instruction while the
instruction memory is fetching the
next sequential instruction

Read
Address

Instruction
Memory

PC

0

BTB

CENG3420 L06.65 Spring 2020

1-bit Prediction Accuracy
q A 1-bit predictor will be incorrect twice when not taken

q For 10 times through the loop we have a 80% prediction
accuracy for a branch that is taken 90% of the time

! Assume predict_bit = 0 to start (indicating
branch not taken) and loop control is at
the bottom of the loop code

1. First time through the loop, the predictor
mispredicts the branch since the branch is
taken back to the top of the loop; invert
prediction bit (predict_bit = 1)

2. As long as branch is taken (looping),
prediction is correct

3. Exiting the loop, the predictor again
mispredicts the branch since this time the
branch is not taken falling out of the loop;
invert prediction bit (predict_bit = 0)

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr

CENG3420 L06.67 Spring 2020

2-bit Predictors
q A 2-bit scheme can give 90% accuracy since a prediction

must be wrong twice before the prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken

Taken
Taken

Taken

Loop: 1st loop instr
2nd loop instr

.

.

.
last loop instr
bne $1,$2,Loop
fall out instr

wrong on loop
fall out

0

1 1

right 9 times

right on 1st

iteration
0

q BHT also
stores the
initial FSM
state

1011

01
00

CENG3420 L06.68 Spring 2020

CENG3420 L06.69 Spring 2020

Outline
q Pipeline Motivations
q Pipeline Hazards
q Exceptions
q Background: Flip-Flop Control Signals

CENG3420 L06.70 Spring 2020

Dealing with Exceptions
q Exceptions (aka interrupts) are just another form of

control hazard. Exceptions arise from
! R-type arithmetic overflow
! Trying to execute an undefined instruction
! An I/O device request
! An OS service request (e.g., a page fault, TLB exception)
! A hardware malfunction

q The pipeline has to stop executing the offending
instruction in midstream, let all prior instructions
complete, flush all following instructions, set a register to
show the cause of the exception, save the address of the
offending instruction, and then jump to a prearranged
address (the address of the exception handler code)

q The software (OS) looks at the cause of the exception
and “deals” with it

CENG3420 L06.71 Spring 2020

Two Types of Exceptions
q Interrupts – asynchronous to program execution

! caused by external events
! may be handled between instructions, so can let the

instructions currently active in the pipeline complete before
passing control to the OS interrupt handler

! simply suspend and resume user program

q Traps (Exception) – synchronous to program execution
! caused by internal events
! condition must be remedied by the trap handler for that

instruction, so much stop the offending instruction midstream
in the pipeline and pass control to the OS trap handler

! the offending instruction may be retried (or simulated by the
OS) and the program may continue or it may be aborted

CENG3420 L06.73 Spring 2020

Where in the Pipeline Exceptions Occur

q Arithmetic overflow

q Undefined instruction

q TLB or page fault

q I/O service request

q Hardware malfunction
A

LUIM Reg DM Reg

Stage(s)? Synchronous?

EX yes

yes

yes

no

no

q Beware that multiple exceptions can occur
simultaneously in a single clock cycle

ID

IF, MEM

any

any

CENG3420 L06.75 Spring 2020

Multiple Simultaneous Exceptions

I
n
s
t
r.

O
r
d
e
r

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

D$ page fault

arithmetic overflow

undefined instruction

I$ page fault

q Hardware sorts the exceptions so that the earliest
instruction is the one interrupted first

CENG3420 L06.76 Spring 2020

Additions to MIPS to Handle Exceptions (optional)
q Cause register (records exceptions) – hardware to record

in Cause the exceptions and a signal to control writes to it
(CauseWrite)

q EPC register (records the addresses of the offending
instructions) – hardware to record in EPC the address of
the offending instruction and a signal to control writes to it
(EPCWrite)
! Exception software must match exception to instruction

q A way to load the PC with the address of the exception
handler
! Expand the PC input mux where the new input is hardwired to

the exception handler address - (e.g., 8000 0180hex for arithmetic
overflow)

q A way to flush offending instruction and the ones that
follow it

CENG3420 L06.77 Spring 2020

Datapath with Controls for Exceptions (optional)

Read
Address

Instruction
Memory

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

RegFile

Read Data 1

ReadData 2

16

32

ALU

Shift
left 2

Add

Data
Memory

Address

Write Data

Read Data

IF/ID

Sign
Extend

ID/EX
EX/MEM

MEM/WB

Control

ALU
cntrl

BranchPCSrc

Forward
Unit

Hazard
Unit

0
10

C
om

pa
re

Forward
Unit

Add

IF
.F

lu
sh

0

8000 0180hex

Cause

EPC

EX.Flush

0

0

ID.Flush

CENG3420 L06.78 Spring 2020

Summary
q All modern day processors use pipelining for

performance (a CPI of 1 and a fast CC)
q Pipeline clock rate limited by slowest pipeline stage –

so designing a balanced pipeline is important
q Must detect and resolve hazards

! Structural hazards – resolved by designing the pipeline
correctly

! Data hazards
- Stall (impacts CPI)
- Forward (requires hardware support)

! Control hazards – put the branch decision hardware in as
early a stage in the pipeline as possible

- Stall (impacts CPI)
- Delay decision (requires compiler support)
- Static and dynamic prediction (requires hardware support)

q Pipelining complicates exception handling

CENG3420 L06.79 Spring 2020

Outline
q Pipeline Motivations
q Pipeline Hazards
q Exceptions
q Background: Flip-Flop Control Signals

CENG3420 L06.80 Spring 2020

Clocking Methodologies
q Clocking methodology defines when signals can

be read and when they can be written
falling (negative) edge

rising (positive) edgeclock cycle

clock rate = 1/(clock cycle)
e.g., 10 nsec clock cycle = 100 MHz clock rate

1 nsec clock cycle = 1 GHz clock rate

q State element design choices
! level sensitive latch
! master-slave and edge-triggered flipflops

CENG3420 L06.81 Spring 2020

Review:Latches vs Flipflops
q Output is equal to the stored value inside the

element
q Change of state (value) is based on the clock

! Latches: output changes whenever the inputs change
and the clock is asserted (level sensitive methodology)

- Two-sided timing constraint
! Flip-flop: output changes only on a clock edge (edge-

triggered methodology)
- One-sided timing constraint

A clocking methodology defines when signals can
be read and written – would NOT want to read a

signal at the same time it was being written

CENG3420 L06.82 Spring 2020

Review: Design A Latch
q Store one bit of information: cross-coupled invertor

q How to change the value stored?

=

SR-Latch

other Latch structures

R: reset signal
S: set signal

CENG3420 L06.83 Spring 2020

Review: Design A Flip-Flop
q Based on Gated Latch

q Master-slave positive-edge-triggered D flip-flop

=

CENG3420 L06.84 Spring 2020

Review: Latch and Flip-Flop
q Latch is level-sensitive
q Flip-flop is edge triggered

CENG3420 L06.85 Spring 2020

Our Implementation
q An edge-triggered methodology
q Typical execution

! read contents of some state elements
! send values through some combinational logic
! write results to one or more state elements

State
element

1

State
element

2

Combinational
logic

clock

one clock cycle

q Assumes state elements are written on every clock
cycle; if not, need explicit write control signal
! write occurs only when both the write control is asserted

and the clock edge occurs

