
CENG3420
Lecture 02: Instruction Set Architecture

Bei Yu

(Latest update: February 22, 2020)

Spring 2020

1 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

2 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

3 / 49

Two Key Principles of Machine Design
1. Instructions are represented as numbers and, as such, are indistinguishable from data
2. Programs are stored in alterable memory (that can be read or written to) just like data

Stored-Program Concept

I Programs can be shipped as files of binary numbers – binary
compatibility

I Computers can inherit ready-made software provided they are
compatible with an existing ISA – leads industry to align around
a small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll
data

Source code in
C for Acct prg

Memory

3 / 49

Assembly Language Instructions

The language of the machine
I Want an ISA that makes it easy to build the hardware and the compiler while

maximizing performance and minimizing cost
Our target: the MIPS ISA
I similar to other ISAs developed since the 1980’s
I used by Broadcom, Cisco, NEC, Nintendo, Sony, ...

Design Goals

Maximize performance, minimize cost, reduce design time (time-to-market), minimize
memory space (embedded systems), minimize power consumption (mobile systems)

4 / 49

CISC vs. RISC

Complex Instruction Set Computer (CISC)

Lots of instructions of variable size, very memory optimal, typically less registers.

I Intel x86

Reduced Instruction Set Computer (RISC)

Instructions, all of a fixed size, more registers, optimized for speed. Usually called a
“Load/Store” architecture.

I MIPS, LC-3b, Sun SPARC, HP PA-RISC, IBM PowerPC ...

5 / 49

RISC – Reduced Instruction Set Computer

RISC Philosophy

I fixed instruction lengths
I load-store instruction sets
I limited number of addressing modes
I limited number of operations

I Instruction sets are measured by how well compilers use them as opposed to how well
assembly language programmers use them

6 / 49

MIPS (RISC) Design Principles
Simplicity favors regularity
I fixed size instructions
I small number of instruction formats
I opcode always the first 6 bits

Smaller is faster
I limited instruction set
I limited number of registers in register file
I limited number of addressing modes

Make the common case fast
I arithmetic operands from the register file (load-store machine)
I allow instructions to contain immediate operands

Good design demands good compromises
I three instruction formats

7 / 49

MIPS Instruction Fields

MIPS fields are given names to make them easier to refer to

op rs rt rd shamt funct
6 5 5 5 5 6

op 6-bits, opcode that specifies the operation
rs 5-bits, register file address of the first source operand
rt 5-bits, register file address of the second source operand
rd 5-bits, register file address of the result’s destination

shamt 5-bits, shift amount (for shift instructions)
funct 6-bits, function code augmenting the opcode

8 / 49

The MIPS ISA

Instruction Categories
I Load/Store
I Computational
I Jump and Branch
I Floating Point
I Memory Management
I Special

R0 - R31

PC
HI
LO

Registers

3 Instruction Formats: all 32 bits wide

OP rs rt rd shamt functR Format

OP rs rt immediateI Format

OP jump targetJ Format

9 / 49

MIPS Instruction Classes Distribution

Frequency of MIPS instruction classes for SPEC2006

Instruction Class Frequency

Integer Ft.	 Pt.

Arithmetic 16% 48%

Data	 transfer 35% 36%

Logical 12% 4%

Cond.	 Branch 34% 8%

Jump 2% 0%

10 / 49

MIPS Register File
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

write control

I Holds thirty-two 32-bit registers
I Two read ports
I One write port

Registers are
I Faster than main memory

I But register files with more locations are slower
I E.g., a 64 word file may be 50% slower than a 32 word file
I Read/write port increase impacts speed quadratically

I Easier for a compiler to use
I (A*B)-(C*D)-(E*F) can do multiplies in any order vs. stack

I Can hold variables so that code density improves (since register are named with fewer
bits than a memory location)

11 / 49

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler no
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments no
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

12 / 49

History of MIPS
1981 Dr. John Hennessy at Stanford University founds and leads Stanford MIPS
1984 MIPS Computer Systems, Inc.
1986 R2000 microprocessor
1988 R3000 microprocessor
1991 R4000 microprocessor
1992 Acquired by SGI, rename to MIPS Technologies, Inc
1994 R8000 microprocessor
2011 Android-MIPS
2011 Sold to Imagination Technologies

Sep., 2017 Sold to Tallwood Venture Capital as Tallwood MIPS Inc. for $65 million

13 / 49

History of MIPS (cont.)

I Used in many embedded systems
I E.g., Nintendo-64, Playstation 1, Playstation 2

14 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

15 / 49

MIPS Arithmetic Instructions

I MIPS assembly language arithmetic statement

add $t0, $s1, $s2
sub $t0, $s1, $s2

I Each arithmetic instruction performs one operation
I Each specifies exactly three operands that are all contained in the datapath’s register

file ($t0,$s1,$s2)

destination = source1 op source2

I Instruction Format (R format)

0 17 18 8 0 0x22

15 / 49

MIPS Immediate Instructions

I Small constants are used often in typical code

Possible approaches?

I put “typical constants” in memory and load them
I create hard-wired registers (like $zero) for constants like 1
I have special instructions that contain constants

addi $sp, $sp, 4 #$sp = $sp + 4
slti $t0, $s2, 15 #$t0 = 1 if $s2<15

I Machine format (I format)
I The constant is kept inside the instruction itself!
I Immediate format limits values to the range −215 to +215 − 1

16 / 49

Aside: How About Larger Constants?
I We’d also like to be able to load a 32 bit constant into a register
I For this we must use two instructions

1. A new “load upper immediate” instruction

lui $t0, 1010101010101010

2. Then must get the lower order bits right, use

ori $t0, $t0, 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

17 / 49

Aside: How About Larger Constants?
I We’d also like to be able to load a 32 bit constant into a register
I For this we must use two instructions

1. A new “load upper immediate” instruction

lui $t0, 1010101010101010

2. Then must get the lower order bits right, use

ori $t0, $t0, 1010101010101010

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

17 / 49

MIPS Shift Operations

I Need operations to pack and unpack 8-bit characters into 32-bit words
I Shifts move all the bits in a word left or right

sll $t2, $s0, 8 #$t2 = $s0 << 8 bits
srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

I Instruction Format (R format)
I Such shifts are called logical because they fill with zeros
I Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit positions

18 / 49

MIPS Logical Operations

There are a number of bit-wise logical operations in the MIPS ISA

R Format

and $t0, $t1, $t2 #$t0 = $t1 & $t2
or $t0, $t1, $t2 #$t0 = $t1 | $t2
nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)

I Format

andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00
ori $t0, $t1, 0xFF00 #$t0 = $t1 | ff00

19 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

20 / 49

MIPS Memory Access Instructions

I Two basic data transfer instructions for accessing memory

lw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

I The data is loaded into (lw) or stored from (sw) a register in the register file – a 5 bit
address

I The memory address – a 32 bit address – is formed by adding the contents of the base
address register to the offset value

I A 16-bit field meaning access is limited to memory locations within a region of ±213 or
8,192 words (±215 or 32,768 bytes) of the address in the base register

20 / 49

Machine Language – Load Instruction
Load/Store Instruction Format (I format):

lw $t0, 24($s3)

35 19 8 2410

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. . . 0001 1000
+ . . . 1001 0100
. . . 1010 1100 =

0x120040ac

0x120040ac$t0

21 / 49

Machine Language – Load Instruction
Load/Store Instruction Format (I format):

lw $t0, 24($s3)

35 19 8 2410
Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. . . 0001 1000
+ . . . 1001 0100
. . . 1010 1100 =

0x120040ac

0x120040ac$t0

21 / 49

Byte Addresses

I Since 8-bit bytes are so useful, most architectures address individual bytes in memory
I Alignment restriction – the memory address of a word must be on natural word

boundaries (a multiple of 4 in MIPS-32)
I Big Endian: leftmost byte is word address

I IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
I Little Endian: rightmost byte is word address

I Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

22 / 49

Aside: Loading and Storing Bytes

MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory
sb $t0, 6($s3) #store byte to memory

I What 8 bits get loaded and stored?
I Load byte places the byte from memory in the rightmost 8 bits of the destination

register
I Store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in

memory

23 / 49

EX-1:
Given following code sequence and memory state:

add $s3, $zero, $zero
lb $t0, 1($s3)
sb $t0, 6($s3)

Memory

0x 0 0 9 0 1 2 A 0
Data Word Address

(Decimal)

0
4
8
12
16
20
24

0x F F F F F F F F
0x 0 1 0 0 0 4 0 2
0x 1 0 0 0 0 0 1 0
0x 0 0 0 0 0 0 0 0
0x 0 0 0 0 0 0 0 0
0x 0 0 0 0 0 0 0 0

1. What value is left in $t0?
2. What word is changed in Memory and to what?
3. What if the machine was little Endian?

24 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

25 / 49

MIPS Control Flow Instructions

MIPS conditional branch instructions:

bne $s0, $s1, Lbl #go to Lbl if $s0!=$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

Example

if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

I Instruction Format (I format)
I How is the branch destination address specified ?

25 / 49

Specifying Branch Destinations
I Use a register (like in lw and sw) added to the 16-bit offset
I which register? Instruction Address Register (the PC)
I its use is automatically implied by instruction
I PC gets updated (PC+4) during the fetch cycle so that it holds the address of the next

instruction
I limits the branch distance to −215 to +215 − 1 (word) instructions from the (instruction

after the) branch instruction, but most branches are local anyway

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

26 / 49

In Support of Branch Instructions

I We have beq, bne, but what about other kinds of branches (e.g., branch-if-less-than)?
I For this, we need yet another instruction, slt

Set on less than instruction:

slt $t0, $s0, $s1 # if $s0 < $s1 then
$t0 = 1 else
$t0 = 0

I Instruction format (R format)

Alternate versions of slt

slti $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...
sltu $t0, $s0, $s1 # if $s0 < $s1 then $t0=1 ...
sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

27 / 49

Aside: More Branch Instructions

Can use slt, beq, bne, and the fixed value of 0 in register $zero to create other
conditions
I less than: blt $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if
bne $at, $zero, Label #$s1 < $s2

I less than or equal to: ble $s1, $s2, Label

I greater than: bgt $s1, $s2, Label

I great than or equal to: bge $s1, $s2, Label

I Such branches are included in the instruction set as pseudo instructions – recognized
(and expanded) by the assembler

I It’s why the assembler needs a reserved register ($at)

28 / 49

Bounds Check Shortcut

I Treating signed numbers as if they were unsigned gives a low cost way of checking if
0 ≤ x < y (index out of bounds for arrays)

sltu $t0, $s1, $t2 # $t0 = 0 if
$s1 > $t2 (max)
or $s1 < 0 (min)

beq $t0,$zero,IOOB # go to IOOB if
$t0 = 0

I The key is that negative integers in two’s complement look like large numbers in
unsigned notation.

I Thus, an unsigned comparison of x < y also checks if x is negative as well as if x is
less than y.

29 / 49

Other Control Flow Instructions
I MIPS also has an unconditional branch instruction or jump instruction:

j label #go to label

I Instruction Format (J Format)

0x02 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

30 / 49

EX-2: Branching Far Away

What if the branch destination is further away than can be captured in 16 bits? Re-write the
following codes.

beq $s0, $s1, L1

31 / 49

EX: Compiling a while Loop in C

while (save[i] == k) i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the array save
is in $s6.

Loop: sll $t1,$s3,2 # Temp reg $t1 = i * 4
add $t1,$t1,$s6 # $t1 = address of save[i]
lw $t0,0($t1) # Temp reg $t0 = save[i]
bne $t0,$s5, Exit # go to Exit if save[i] != k
addi $s3,$s3,1 # i = i + 1
j Loop # go to Loop

Exit:

Note: left shift $s3 to align word address, and later address is increased by 1

32 / 49

EX: Compiling a while Loop in C

while (save[i] == k) i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the array save
is in $s6.

Loop: sll $t1,$s3,2 # Temp reg $t1 = i * 4
add $t1,$t1,$s6 # $t1 = address of save[i]
lw $t0,0($t1) # Temp reg $t0 = save[i]
bne $t0,$s5, Exit # go to Exit if save[i] != k
addi $s3,$s3,1 # i = i + 1
j Loop # go to Loop

Exit:

Note: left shift $s3 to align word address, and later address is increased by 1

32 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

33 / 49

Six Steps in Execution of a Procedure

1. Main routine (caller) places parameters in a place where the procedure (callee) can
access them
I $a0 – $a3: four argument registers

2. Caller transfers control to the callee
3. Callee acquires the storage resources needed
4. Callee performs the desired task
5. Callee places the result value in a place where the caller can access it

I $v0-$v1: two value registers for result values
6. Callee returns control to the caller

I $ra: one return address register to return to the point of origin

33 / 49

Instructions for Accessing Procedures

I MIPS procedure call instruction:

jal ProcedureAddress #jump and link

I Saves PC+4 in register $ra to have a link to the next instruction for the procedure
return

I Machine format (J format):
I Then can do procedure return with a

jr $ra #return

I Instruction format (R format)

34 / 49

Example of Accessing Procedures

I For a procedure that computes the GCD of two values i (in $t0) and j (in $t1):
gcd(i,j);

I The caller puts the i and j (the parameters values) in $a0 and $a1 and issues a

jal gcd #jump to routine gcd

I The callee computes the GCD, puts the result in $v0, and returns control to the caller
using

gcd: . . . #code to compute gcd
jr $ra #return

35 / 49

What if the callee needs to use more registers than allocated to argument and return
values?

I Use a stack: a last-in-first-out queue
I One of the general registers, $sp ($29), is used to address the

stack
I “grows” from high address to low address
I push: add data onto the stack, data on stack at new $sp

$sp = $sp - 4

I pop: remove data from the stack, data from stack at $sp

$sp = $sp + 4
low addr

high addr

$sptop of stack

36 / 49

Allocating Space on the Stack

I The segment of the stack containing a procedure’s
saved registers and local variables is its procedure
frame (aka activation record)

I The frame pointer ($fp) points to the first word of the
frame of a procedure – providing a stable “base”
register for the procedure

I $fp is initialized using $sp on a call and $sp is
restored using $fp on a return

low addr

high addr

$sp

Saved argument
regs (if any)

Saved return addr

Saved local regs
(if any)

Local arrays &
structures (if
any)

$fp

37 / 49

Allocating Space on the Heap

I Static data segment for constants and other static
variables (e.g., arrays)

I Dynamic data segment (aka heap) for structures that
grow and shrink (e.g., linked lists)

I Allocate space on the heap with malloc() and free
it with free() in C

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c
Stack

Dynamic data
(heap)

$sp

$gp

PC

38 / 49

EX-3: Compiling a C Leaf Procedure

Leaf procedures are ones that do not call other procedures. Give the MIPS assembler code
for the follows.

int leaf_ex (int g, int h, int i, int j)
{

int f;
f = (g+h) - (i+j);
return f;

}

Solution:

Suppose g, h, i, and j are in $a0, $a1, $a2, $a3

leaf_ex: addi $sp,$sp,-8 #make stack room
sw $t1,4($sp) #save $t1 on stack
sw $t0,0($sp) #save $t0 on stack
add $t0,$a0,$a1
add $t1,$a2,$a3
sub $v0,$t0,$t1
lw $t0,0($sp) #restore $t0
lw $t1,4($sp) #restore $t1
addi $sp,$sp,8 #adjust stack ptr
jr $ra

39 / 49

EX-3: Compiling a C Leaf Procedure

Leaf procedures are ones that do not call other procedures. Give the MIPS assembler code
for the follows.

int leaf_ex (int g, int h, int i, int j)
{

int f;
f = (g+h) - (i+j);
return f;

}

Solution:

Suppose g, h, i, and j are in $a0, $a1, $a2, $a3

leaf_ex: addi $sp,$sp,-8 #make stack room
sw $t1,4($sp) #save $t1 on stack
sw $t0,0($sp) #save $t0 on stack
add $t0,$a0,$a1
add $t1,$a2,$a3
sub $v0,$t0,$t1
lw $t0,0($sp) #restore $t0
lw $t1,4($sp) #restore $t1
addi $sp,$sp,8 #adjust stack ptr
jr $ra

39 / 49

Nested Procedures

I Nested Procedure: call other procedures
I What happens to return addresses with nested procedures?

int rt_1 (int i)
{

if (i == 0) return 0;
else return rt_2(i-1);

}

40 / 49

Nested procedures (cont.)

caller: jal rt_1
next: . . .

rt_1: bne $a0, $zero, to_2
add $v0, $zero, $zero
jr $ra

to_2: addi $a0, $a0, -1
jal rt_2
jr $ra

rt_2: . . .

I On the call to rt_1, the return address (next in the caller routine) gets stored in $ra.

Question:
What happens to the value in $ra (when $a0!=0) when rt_1 makes a call to rt_2?

41 / 49

Compiling a Recursive Procedure
A procedure for calculating factorial

int fact (int n)
{

if (n < 1) return 1;
else return (n * fact (n-1));

}

I A recursive procedure (one that calls itself!)

fact (0) = 1
fact (1) = 1 * 1 = 1
fact (2) = 2 * 1 * 1 = 2
fact (3) = 3 * 2 * 1 * 1 = 6
fact (4) = 4 * 3 * 2 * 1 * 1 = 24
. . .

I Assume n is passed in $a0; result returned in $v0

42 / 49

Compiling a Recursive Procedure (cont.)
fact: addi $sp, $sp, -8 #adjust stack pointer

sw $ra, 4($sp) #save return address
sw $a0, 0($sp) #save argument n
slti $t0, $a0, 1 #test for n < 1
beq $t0, $zero, L1 #if n >=1, go to L1
addi $v0, $zero, 1 #else return 1 in $v0
addi $sp, $sp, 8 #adjust stack pointer
jr $ra #return to caller

L1: addi $a0, $a0, -1 #n >=1, so decrement n
jal fact #call fact with (n-1)

#this is where fact returns
bk_f: lw $a0, 0($sp) #restore argument n

lw $ra, 4($sp) #restore return address
addi $sp, $sp, 8 #adjust stack pointer
mul $v0, $a0, $v0 #$v0 = n * fact(n-1)
jr $ra #return to caller

Note: bk_f is carried out when fact is returned.

Question:
Why we don’t load $ra, $a0 back to registers?

43 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

44 / 49

Atomic Exchange Support

I Need hardware support for synchronization mechanisms to avoid data races where the
results of the program can change depending on how events happen to occur

I Two memory accesses from different threads to the same location, and at least one is
a write

I Atomic exchange (atomic swap): interchanges a value in a register for a value in
memory atomically, i.e., as one operation (instruction)

I Implementing an atomic exchange would require both a memory read and a memory
write in a single, uninterruptable instruction.

I An alternative is to have a pair of specially configured instructions

ll $t1, 0($s1) #load linked
sc $t0, 0($s1) #store conditional

44 / 49

Automic Exchange with ll and sc

I If the contents of the memory location specified by the ll are changed before the sc
to the same address occurs, the sc fails

I If the value in memory between the ll and the sc instructions changes, then sc
returns a 0 in $t0 causing the code sequence to try again.

Example:

try: add $t0, $zero, $s4 #$t0=$s4 (exchange value)
ll $t1, 0($s1) #load memory value to $t1
sc $t0, 0($s1) #try to store exchange

#value to memory, if fail
#$t0 will be 0

beq $t0, $zero, try #try again on failure
add $s4, $zero, $t1 #load value in $s4

45 / 49

The C Code Translation Hierarchy

C program

compiler

assembly code

assembler

object code library routines

executable

linker

loader

memory

machine code

46 / 49

Compiler Benefits

I Comparing performance for bubble (exchange) sort
I To sort 100,000 words with the array initialized to random values on a Pentium 4 with a

3.06 clock rate, a 533 MHz system bus, with 2 GB of DDR SDRAM, using Linux
version 2.4.20

The un-optimized code has the best CPI∗, the O1 version has the lowest instruction
count, but the O3 version is the fastest.

gcc opt Relative	
performance

Clock	cycles	
(M)

Instr count
(M)

CPI

None 1.00 158,615 114,938 1.38

O1	(medium) 2.37 66,990 37,470 1.79

O2	(full) 2.38 66,521 39,993 1.66

O3	(proc mig) 2.41 65,747 44,993 1.46

∗CPI: clock cycles per instruction
47 / 49

Overview

Introduction

Arithmetic & Logical Instructions

Data Transfer Instructions

Control Instructions

Procedure Instructions

Others

Summary

48 / 49

Addressing Modes Illustrated
1. Register addressing

op rs rt rd funct Register
word operand

2. Base (displacement) addressing
op rs rt offset

base register

Memory
word or byte operand

3. Immediate addressing
op rs rt operand

4. PC-relative addressing
op rs rt offset

Program Counter (PC)

Memory
branch destination instruction

5. Pseudo-direct addressing
op jump address

Program Counter (PC)

Memory
jump destination instruction||

48 / 49

MIPS Organization So Far
Processor Memory

32 bits

230

words

read/write
addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32
32

32

32

5

5

5

PC

ALU

32 32

32
32

32

0 1 2 3
7654

byte address
(big Endian)

Fetch
PC = PC+4

DecodeExec

Add
32

32
4

Add
32

32
branch offset

49 / 49

	Main Talk
	Introduction
	Arithmetic & Logical Instructions
	Data Transfer Instructions
	Control Instructions
	Procedure Instructions
	Others
	Summary

