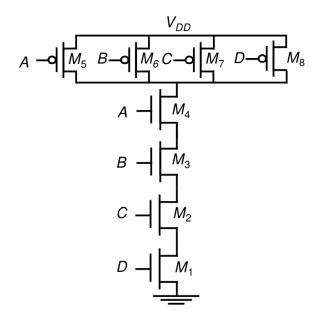
CENG3420 Homework 1

Due: Mar. 08, 2020


Solutions

All solutions should be submitted to the blackboard in the format of PDF/MS Word.

Q1 (10%) The following table shows manufacturing data for one processor.

Wafer Area	Dies per Wafer	Defects per Unit Area	Cost per Wafer
$200 \ cm^2$	100	$0.02\ cm^{-2}$	12

- 1. Find the yield
- 2. Find the cost per die
- 3. If the number of dies per wafer is increased by 10% and the corresponding defects per area unit is reduced by 10%, find the yield and the cost per die.
- A1 1. 0.961
 - 2. 0.125
 - 3. 0.968, 0.113
- Q2 (15%) Draw the schematic view of four-input NAND gate.
- A2 As shown below.

Q3 (10%) Given a simple processor, if capacitive load is reduced by 10%, voltage is reduced by 10%, maintain the same frequency, how much power consumption can be reduced?

A3 0.271

Q4 (10%) Assume \$t0=0xAAAAAAA, \$t1=0x12345678. Find the value of \$t2 after the following instructions, respectively.

1.	sll \$	\$t2,	\$t0,	4
	or s	\$t2,	\$t2,	\$t1
2.			\$t0, \$t2,	
3.			\$t0, \$t2,	3 OxffEf

A4 As shown below,

- 1. 0xBABEFEF8
- 2. 0x0000000
- 3. 0x00005545
- **Q5** (15%) Assume that the variables a, b, c, d, and e are assigned to registers \$\$0, \$\$1, \$\$2, \$\$3, and \$\$4, respectively. Given MIPS assembly instructions:

sll \$s2, \$s4, 2
add \$s0, \$s2, \$s3
add \$s0, \$s0, \$s1

Translate the MIPS assembly instructions above into the corresponding C statement. **Please include comments for each instruction in your solution.**

A5 a = 4*e + b + d;

Q6 (15%) Assume that \$a0=n and \$a1=rst. Given the C statement:

```
int sum(int n, int rst){
    if (n>0)
        return sum(n-1, rst+n);
    else
        return rst;
}
```

Translate the C statement above into corresponding MIPS assembly instructions. **Please** include comments for each instruction in your solution.

A6 As shown below (assume that \$a0=n and \$a1=rst):

```
sum:
slti $t0, $a0, 1
bne $t0, $zero, sum_exit
add $a1, $a1, $a0
```

```
addi $a0, $a0, -1
j sum
sum_exit:
add $v0, $a1, $zero
jr $ra
```

Q7 (15%) Write down the step by step procedure to calculate 7×3 or 0111×0011 . Use Multiplier0 to indicate the least significant bit of the multiplier

Iteration	Step	Multiplier	Multiplier0	Multiplicand	Product
0	Initial values	001 <u>1</u>	1	0000 0111	0000 0000
1	1a: 1⇒Prod=Prod+Mcand	0011	1	0000 0111	0000 0111
	2: Shift left Multiplicand	0011	1	0000 1110	0000 0111
	3: Shift right Multiplier	000 <u>1</u>	1	0000 1110	0000 0111
2	1a: 1⇒Prod=Prod+Mcand	0001	1	0000 1110	0001 0101
	2: Shift left Multiplicand	0001	1	0001 1100	0001 0101
	3: Shift right Multiplier	000 <u>0</u>	0	0001 1100	0001 0101
3	1a: 1⇒Prod=Prod+Mcand	0000	0	0001 1100	0001 0101
	2: Shift left Multiplicand	0000	0	0011 1000	0001 0101
	3: Shift right Multiplier	000 <u>0</u>	0	0011 1000	0001 0101
4	1a: 1⇒Prod=Prod+Mcand	0000	0	0011 1000	0001 0101
	2: Shift left Multiplicand	0000	0	0111 0000	0001 0101
	3: Shift right Multiplier	0000	0	0111 0000	0001 0101

A7

- **Q8** (10%) A program runs in 10s on computer A with 2GHz clock. If we want to design a computer B such that the same program can be finished in 7s, determine the clock frequency of computer B. Assume it requires only $0.7 \times$ clock cycles to execute the program on computer B due to different CPU design.
- A8 CPU clock cycle of the program on computer A is,

$$cycle_A = 10s \times 2GHz = 2 \times 10^{10}$$
 cycles. (1)

CPU clock cycle of the program on computer B is,

$$cycle_B = 0.7 \times cycle_A = 1.4 \times 10^{10} \text{ cycles.}$$
 (2)

Clock frequency of computer B will be,

$$cycle_B/7s = 2GHz.$$
 (3)