
CENG3420
Lab 2-1: LC-3b Simulator

Bei Yu

Department of Computer Science and Engineering
The Chinese University of Hong Kong

byu@cse.cuhk.edu.hk

Spring 2019

1 / 29

mailto:byu@cse.cuhk.edu.hk

Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

2 / 29

Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

3 / 29

Assembler & Simulator

I Assembly language – symbolic (MIPS, LC-3b, ...)
I Machine language – binary

I Assembler is a program that
I turns symbols into machine instructions.
I EX: lc3b_asm, SPIM, ...

I Simulator is a program that
I mimics the behavior of a processor
I usually in high-level language
I EX: lc3b_sim, SPIM, ...

3 / 29

LC-3b

I LC-3b: Little Computer 3, b version.
I Relatively simple instruction set
I Most used in teaching for CS & CE
I Developed by Yale Patt@UT & Sanjay J. Patel@UIUC

4 / 29

LC-3 Architecture

I RISC – only 15 instructions
I 16-bit data and address
I 8 general-purpose registers (GPR)

Plus 4 special-purpose registers:
I Program Counter (PC)
I Instruction Register (IR)
I Condition Code Register (CC)
I Process Status Register (PSR)

5 / 29

Memory

2k × m array of stored bits:

Address
I unique (k-bit) identifier of location
I LC-3: k = 16

Contents
I m-bit value stored in location
I LC-3: m = 16

Basic Operations:
I READ (Load): value in a memory location→ the Processor
I WRITE (Store): value in the Processor→ a memory location

6 / 29

Interface to Memory
How does the processing unit get data to/from memory?
I MAR: Memory Address Register
I MDR: Memory Data Register

To LOAD from a location (A):

1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

To STORE a value (X) into a location (A):

1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.
3. Send a “write” signal to the memory.

7 / 29

CPU-only Tasks

In addition to input & output a program also:
I Evaluates arithmetic & logical functions to determine values to assign to variable.
I Determines the order of execution of the statements in the program.
I In assembly this distinction is captured in the notion of arithmetic/logical, and control

instructions.

8 / 29

Processing Unit

Functional Units:
I ALU = Arithmetic/Logic Unit
I could have many functional units.
I some of them special-purpose (floating point, multiply, square root, . . .)

Registers
I Small, temporary storage
I Operands and results of functional units
I LC-3 has eight registers (R0, . . . , R7), each 16 bits wide

Word Size
I number of bits normally processed by ALU in one instruction
I also width of registers
I LC-3 is 16 bits

9 / 29

Instructions

The instruction is the fundamental unit of work.

Specifies two things:

I opcode: operation to be performed
I Operands: data/locations to be used for operation

Three basic kinds of instructions:
I Computational instructions
I Data-movement instructions
I Flow-control instructions

10 / 29

Instruction Encoding

I in LC-3, the most-significant four bits contain the instruction’s OPCODE always.
I The meaning of the other bits changes according to the instruction.
I Look up the “LC-3b-ISA.pdf” find all 16 instruction format descriptions

11 / 29

http://www.cse.cuhk.edu.hk/~byu/CENG3420/2019Spring/doc/LC-3b-ISA.pdf

LC-3b Instructions

I 16 bit instruction
I Memory address space is 16 bits→ 216 locations
I Each memory address containing one byte (eight bits).

I One instruction or declaration per line

12 / 29

LC-3 v.s. MIPS

LC-3
1. 16 bit
2. NO floating point instruction
3. 8 registers
4. NO hardwired register value
5. Only has AND, NOT, and ADD

MIPS
1. 32 bit
2. Floating point instruction
3. 32 registers
4. $0 is hardwired to 0
5. Full complement of arithmetic, logical,

and shift operations

13 / 29

Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

14 / 29

LC-3b Example 1: Do nothing

“./lc3b_asm nop.asm nop.cod”

nop.asm:

.ORIG x3000
NOP
NOP
.END

nop.cod:

0x3000
0x0000
0x0000

I NOP instruction translates into machine code 0x0000.

14 / 29

Assembler Directives

I Directives give information to the assembler
I Not executed by the program
I All directives start with a period ‘.’

.ORIG Where to start in placing things in memory

.FILL Declare a memory location (variable)

.END Tells assembly where your program source ends

15 / 29

Assembler Directives: .ORIG

I Tells where to put code in memory (starting location)
I Only one .ORIG allowed per program module
I PC is set to this address at start up
I Similar to the main() function in C
I Example:

.ORIG x3000

16 / 29

Assembler Directives: .FILL

I Declaration and initialization of variables
I Always declaring words
I Examples:

flag .FILL x0001
counter .FILL x0002
letter .FILL x0041
letters .FILL x4241

17 / 29

Assembler Directives: .END

I Tells the assembler where your program ends
I Only one .END allowed in your program module
I NOT where the execution stops!

18 / 29

LC-3b Example 2: Count from 10 to 1

count10.asm:

.ORIG x3000
LEA R0, TEN
LDW R1, R0, #0

START ADD R1, R1, #-1
BRZ DONE
BR START

DONE TRAP x25
TEN .FILL x000A

.END

count10.cod:

0x3000
0xE005
0x6200
0x127F
0x0401
0x0FFD

0xF025
0x000A

I More explanations will be in Lab2-2.

19 / 29

Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

20 / 29

LC-3b Simulator: lc3b_sim

I Download from course website (lab2-assignment.tar.gz)
I The simulator will

I Execute the input LC-3b program
I One instruction at a time
I Modify the architectural state of the LC-3b

I Two main sections: the shell and the simulation routines
I Only need to work on simulation routine part.

20 / 29

http://www.cse.cuhk.edu.hk/~byu/CENG3420/2019Spring/doc/lab2-assignment.tar.gz

LC-3b Shell

./lc3b_sim [cod file]

21 / 29

LC-3b Architecture State
I Please refer to LC-3b_ISA for more details
I PC
I General purpose registers (REGS): 8 registers
I Condition codes: N (negative); Z (zero); P (positive).

22 / 29

http://www.cse.cuhk.edu.hk/~byu/CENG3420/2019Spring/doc/LC-3b-ISA.pdf

LC-3b Memory Structure

Two word-aligned locations are to store one 16-bit word.
I addresses differ only in bit 0
I Locations x0006 and x0007 are word-aligned

23 / 29

How to use LC-3b Simulator?

1. Compile your C codes through make command.
2. Run the compiled LC-3b simulator through ./lc3b_sim2 bench/xxx.cod.

Here the parameter is a machine code file.
3. In the simulator, run “n” instructions. When n = 3, run 3

4. In the simulator, print out register information: rdump

24 / 29

Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

25 / 29

Lab2 Task 1

architectural state:
I In process_instruction(), update NEXT_LATCHES
I At this moment, only update (increase PC value)

memory:
I Given CURRENT_LATCHES.PC, read related word in memory
I Implement function int memWord (int startAddr)

25 / 29

Task 1 Golden Results: nop.cod

Output after run 2

process_instruction()| curInstr = 0x0000
process_instruction()| curInstr = 0x0000

Output after rdump:
Instruction Count : 2
PC : 0x3004
CCs: N = 0 Z = 1 P = 0
Registers:
0: 0x0000
1: 0x0000
2: 0x0000
3: 0x0000
4: 0x0000
5: 0x0000
6: 0x0000
7: 0x0000

26 / 29

Task 1 Golden Results: count10.cod
Output after run 7:

process_instruction()| curInstr = 0xe005
process_instruction()| curInstr = 0x6200
process_instruction()| curInstr = 0x127f
process_instruction()| curInstr = 0x0401
process_instruction()| curInstr = 0x0ffd
process_instruction()| curInstr = 0xf025
Simulator halted

Output after rdump:
Instruction Count : 6
PC : 0x0000
CCs: N = 0 Z = 1 P = 0
Registers:
0: 0x0000
1: 0x0000
2: 0x0000
3: 0x0000
4: 0x0000
5: 0x0000
6: 0x0000
7: 0x300c

27 / 29

Task 1 Golden Results: toupper.cod

Output after run 18:
process_instruction()| curInstr = 0xe00f
process_instruction()| curInstr = 0x6000
process_instruction()| curInstr = 0x6000
process_instruction()| curInstr = 0xe20d
process_instruction()| curInstr = 0x6240
process_instruction()| curInstr = 0x6240
process_instruction()| curInstr = 0x2400
process_instruction()| curInstr = 0x0406
process_instruction()| curInstr = 0x14b0
process_instruction()| curInstr = 0x14b0
process_instruction()| curInstr = 0x3440
process_instruction()| curInstr = 0x1021
process_instruction()| curInstr = 0x1261
process_instruction()| curInstr = 0x0ff8
process_instruction()| curInstr = 0x3440
process_instruction()| curInstr = 0xf025
Simulator halted

28 / 29

Task 1 Golden Results: toupper.cod (cont.)

Output after rdump:

Instruction Count : 16
PC : 0x0000
CCs: N = 0 Z = 1 P = 0
Registers:
0: 0x0000
1: 0x0000
2: 0x0000
3: 0x0000
4: 0x0000
5: 0x0000
6: 0x0000
7: 0x3020

29 / 29

	Main Talk
	LC-3b Basis
	LC-3b Assembly Examples
	LC-3b Simulator
	Task

