
CENG3420
Lecture 10: I/O Systems

Bei Yu

byu@cse.cuhk.edu.hk
(Latest update: March 28, 2019)

Spring 2019

1 / 28

mailto:byu@cse.cuhk.edu.hk


Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

2 / 28



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

3 / 28



Review: Major Components of a Computer

Processor

Control

Datapath

Memory

Devices

Input

Output

Important metrics for an I/O system
I Performance
I Expandability
I Dependability
I Cost, size, weight
I Security

3 / 28



A Typical I/O System

Processor

Cache

Memory  - I/O  Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

4 / 28



Input and Output Devices

I/O devices are incredibly diverse with respect to
I Behavior – input, output or storage
I Partner – human or machine
I Data rate – the peak rate at which data can be transferred

Device Behavior Partner Data Rate (Mb/s)
Keyboard Input Human 0.0001
Mouse Input Human 0.0038

Laser printer Output Human 3.2000
Flash memory Storage Machine 32.0000–200.0000
Magnetic disk Storage Machine 800.0000–3000.0000

Graphics display Output Human 800.0000–8000.0000
Network/LAN Input/output Machine 100.0000–10000.0000

5 / 28



I/O Performance Measures

I/O bandwidth (throughput)
I Amount of information that can be input (output) and communicated per unit time
I How much data can we move through the system in a certain time?
I How many I/O operations can we do per unit time?

I/O response time (latency)
I Total elapsed time to accomplish an input or output operation
I An especially important performance metric in real-time systems

6 / 28



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

7 / 28



Bus

A shared communication link (a single set of wires used to connect multiple subsystems)
that needs to support a range of devices with widely varying latencies and data transfer
rates

Advantages
I Versatile – new devices can be added easily and can be moved between computer

systems that use the same bus standard
I Low cost – a single set of wires is shared in multiple ways

Disadvantages
I Creates a communication bottleneck – bus bandwidth limits the maximum I/O

throughput

The maximum bus speed is largely limited by
I The length of the bus
I The number of devices on the bus

7 / 28



Bus

A shared communication link (a single set of wires used to connect multiple subsystems)
that needs to support a range of devices with widely varying latencies and data transfer
rates

Advantages
I Versatile – new devices can be added easily and can be moved between computer

systems that use the same bus standard
I Low cost – a single set of wires is shared in multiple ways

Disadvantages
I Creates a communication bottleneck – bus bandwidth limits the maximum I/O

throughput

The maximum bus speed is largely limited by
I The length of the bus
I The number of devices on the bus

7 / 28



Types of Buses

Processor-Memory Bus (“Front Side Bus”, proprietary)
I Short and high speed
I Matched to the memory system to maximize the memory-processor bandwidth
I Optimized for cache block transfers

I/O Bus (industry standard, e.g., SCSI, USB, Firewire)
I Usually is lengthy and slower
I Needs to accommodate a wide range of I/O devices
I Use either the processor-memory bus or a backplane bus to connect to memory

Backplane Bus (industry standard, e.g., ATA, PCIexpress)
I Allow processor, memory and I/O devices to coexist on a single bus
I Used as an intermediary bus connecting I/O busses to the processor-memory bus

8 / 28



I/O Transactions

I An I/O transaction is a sequence of operations over the interconnect that includes a
request and may include a response either of which may carry data.

I A transaction is initiated by a single request and may take many individual bus
operations.

I An I/O transaction typically includes two parts
1. Sending the address
2. Receiving or sending the data

9 / 28



Synchronous and Asynchronous Buses
Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for communication that is

relative to the clock
I

I

I

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)
I

I

I

I

10 / 28



Synchronous and Asynchronous Buses
Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for communication that is

relative to the clock
I , Involves very little logic and can run very fast
I

I

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)
I

I

I

I

10 / 28



Synchronous and Asynchronous Buses
Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for communication that is

relative to the clock
I , Involves very little logic and can run very fast
I / Every device communicating on the bus must use same clock rate
I / To avoid clock skew, they cannot be long if they are fast

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)
I

I

I

I

10 / 28



Synchronous and Asynchronous Buses
Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for communication that is

relative to the clock
I , Involves very little logic and can run very fast
I / Every device communicating on the bus must use same clock rate
I / To avoid clock skew, they cannot be long if they are fast

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)
I , Can accommodate a wide range of devices and device speeds
I , Can be lengthened without worrying about clock skew
I

I

10 / 28



Synchronous and Asynchronous Buses
Synchronous Bus (e.g., processor-memory buses)
I Includes a clock in the control lines and has a fixed protocol for communication that is

relative to the clock
I , Involves very little logic and can run very fast
I / Every device communicating on the bus must use same clock rate
I / To avoid clock skew, they cannot be long if they are fast

Asynchronous Bus (e.g., I/O buses)
I It is not clocked, so requires a handshaking protocol and additional control lines

(ReadReq, Ack, DataRdy)
I , Can accommodate a wide range of devices and device speeds
I , Can be lengthened without worrying about clock skew
I / Slow(er)
I / More complex due to handshaking protocol

10 / 28



Advanced Technology Attachment (ATA) Cable

I Backplane bus
I Connects hard drives, CD-ROM drives, and other drives
I [Old] Parallel ATA (PATA): synchronous
I [New] Serial ATA (SATA), much thinner, asynchronous

I Reason: Skew Problem

11 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2.
3.
4.
5.
6.
7.
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data
2

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3.
4.
5.
6.
7.
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data
3

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3. I/O device sees Ack and releases the ReadReq and data lines
4.
5.
6.
7.
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data
4

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3. I/O device sees Ack and releases the ReadReq and data lines
4. Memory sees ReadReq go low and drops Ack
5.
6.
7.
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data
5

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3. I/O device sees Ack and releases the ReadReq and data lines
4. Memory sees ReadReq go low and drops Ack
5. When memory ready, putting data on data lines & raises DataRdy
6.
7.
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data

6

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3. I/O device sees Ack and releases the ReadReq and data lines
4. Memory sees ReadReq go low and drops Ack
5. When memory ready, putting data on data lines & raises DataRdy
6. I/O device sees DataRdy, reads data from data lines & raises Ack
7.
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data

7

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3. I/O device sees Ack and releases the ReadReq and data lines
4. Memory sees ReadReq go low and drops Ack
5. When memory ready, putting data on data lines & raises DataRdy
6. I/O device sees DataRdy, reads data from data lines & raises Ack
7. Memory sees Ack, releases data lines, and drops DataRdy
8.

12 / 28



Asynchronous Bus Handshaking Protocol
ReadReq

Data

Ack

DataRdy

addr data
8

Example: data from Memory to I/O devices
1. I/O device requests by raising ReadReq & putting addr on the data lines
2. Memory sees ReadReq, reads addr from data lines, and raises Ack
3. I/O device sees Ack and releases the ReadReq and data lines
4. Memory sees ReadReq go low and drops Ack
5. When memory ready, putting data on data lines & raises DataRdy
6. I/O device sees DataRdy, reads data from data lines & raises Ack
7. Memory sees Ack, releases data lines, and drops DataRdy
8. I/O device sees DataRdy go low and drops Ack

12 / 28



Key Characteristics of I/O Standards

Firewire USB  2.0 PCIe Serial  ATA SA  SCSI
Use External External Internal Internal External
Devices  
per  
channel

63 127 1 1 4

Max  length 4.5  meters 5  meters 0.5  meters 1  meter 8  meters
Data  Width 4 2 2  per  lane 4 4
Peak  
Bandwidth

50MB/sec  
(400)
100MB/sec  
(800)

0.2MB/sec  
(low)
1.5MB/sec  
(full)
60MB/sec  
(high)

250MB/sec  
per  lane  
(1x)
Come  as  
1x,  2x,  4x,  
8x,  16x,  
32x

300MB/sec 300MB/sec

Hot  
pluggable?

Yes Yes Depends Yes Yes

Hot plugging: a device does not require a restart of the system

13 / 28



A Typical I/O System

Memory
Controller
Hub

(north  bridge)
5000P  

Intel  Xeon  5300
processor

Intel  Xeon  5300
processor

Main
memory
DIMMs

Front  Side  Bus  
(1333MHz,  10.5GB/sec)FB  DDR2  667

(5.3GB/sec)

PCIe 8x  (2GB/sec)ESI  (2GB/sec)

I/O
Controller  
Hub

(south  bridge)
Entreprise
South
Bridge  2

CD/DVD

Disk

Disk Serial  ATA
(300MB/sec)

Keyboard,
Mouse,  …

LPC
(1MB/sec)

USB  ports USB  2.0
(60MB/sec)

PCIe 4x
(1GB/sec)
PCIe 4x
(1GB/sec)
PCI-X  bus
(1GB/sec)
PCI-X  bus
(1GB/sec)

Parallel  ATA
(100MB/sec)

14 / 28



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

15 / 28



Interfacing I/O Devices to Processor / Memory

The operating system (OS) acts as the interface between the I/O hardware and the program
requesting I/O since
I Multiple programs using the processor share the I/O system
I I/O systems usually use interrupts which are handled by the OS
I Low-level control of an I/O device is complex and detailed

OS must be able to
I give commands to the I/O devices
I be notified the status of I/O device
I transfer data between the memory and the I/O device
I protect I/O devices to which a user program doesn’t have access
I schedule I/O requests to enhance system throughput

15 / 28



How Processor Detects I/O Devices

Port-mapped I/O (PMIO)
I special class of CPU instructions for performing I/O
I EX:

Memory-mapped I/O (MMIO)
I Portions of the high-order memory address space are assigned to each I/O device
I Read and writes to those memory addresses are interpreted as commands to the I/O

devices
I Load/stores to the I/O address space can only be done by the OS
I EX:

16 / 28



How Processor Detects I/O Devices

Port-mapped I/O (PMIO)
I special class of CPU instructions for performing I/O
I EX: in and out instructions in x86 architecture

Memory-mapped I/O (MMIO)
I Portions of the high-order memory address space are assigned to each I/O device
I Read and writes to those memory addresses are interpreted as commands to the I/O

devices
I Load/stores to the I/O address space can only be done by the OS
I EX: MIPS, LC-3b

16 / 28



How I/O Devices Communicate with Processor

Polling
I Processor periodically checks the status of an I/O device (through the OS) to

determine its need for service
I Processor is totally in control – but does all the work
I Can waste a lot of processor time due to speed differences

Interrupt-driven I/O
I I/O device issues an interrupt to indicate that it needs attention

17 / 28



Interrupt Driven I/O

Asynchronous
I does NOT prevent any instruction from completing
I Need a way to identify the device generating the interrupt
I Can have different urgencies (so need a way to prioritize them)

Advantages
I Relieves the processor from having to continuously polling
I user program progress is only suspended during the actual transfer of I/O data to/from

user memory space
Disadvantage
I need special hardware support

18 / 28



Exception Handling Registers

I MIPS uses two coprocessors: C0 and C1 for additional help.
I C0 primarily helps with exception handling
I C1 helps with floating point arithmetic.
I Each coprocessor has a few registers.

19 / 28



Status Register (# 12)

I Interrupt mask bits: whether enables 8 different exception levels
I Exception level bit: 1 if kernel mode; otherwise user mode.
I Interrupt enable bit: whether enable interrupt

20 / 28



Cause Register (# 13)

When an interrupt arrives, it sets its Pending interrupt bit in the cause register, even
if the mask bit is disabled.

I To enable a Pending interrupt in cause register, the corresponding
Interrupt mask in status register must be 1

I Once an interrupt occurs, the OS can find the reason in the Exception code field
0: I/O interrupt
1: arithmetic overflow etc

21 / 28



Handling Exception

The Exception Handler determines the cause of the exception by looking at the
exception code bits. Then it jumps to the appropriate exception handling routine.
Finally, it returns to the main program.

22 / 28



Overview

Introduction

Bus

Interrupt I/O

Direct Memory Access (DMA)

23 / 28



Direct Memory Access (DMA)

I For high-bandwidth devices (like disks) interrupt-driven I/O would consume a lot of
processor cycles

I With DMA, the DMA controller has the ability to transfer large blocks of data directly
to/from the memory without involving the processor

I The processor initiates the DMA transfer by supplying the I/O device address, the
operation to be performed, the memory address destination/source, the number of
bytes to transfer

I The DMA controller manages the entire transfer (possibly thousand of bytes in length),
arbitrating for the bus

I When the DMA transfer is complete, the DMA controller interrupts the processor to let
it know that the transfer is complete

I There may be multiple DMA devices in one system
I Processor and DMA controllers contend for bus cycles and for memory

23 / 28



DMA Example

24 / 28



DMA & Virtual Memory Considerations

Should the DMA work with virtual addresses or physical addresses?

If with Physical Address:
I Must constrain all of the DMA transfers to stay within one page because if it crosses a

page boundary, then it won’t necessarily be contiguous in memory
I If the transfer won’t fit in a single page, it can be broken into a series of transfers (each

of which fit in a page) which are handled individually and chained together
If with virtual Address:
I The DMA controller will have to translate the virtual address to a physical address (i.e.,

will need a TLB structure)

25 / 28



DMA & Virtual Memory Considerations

Whichever is used, the OS must cooperate by not remapping pages while a DMA transfer
involving that page is in progress. Otherwise, may cause Coherency problem

26 / 28



Coherency Problem

I In systems with caches, there can be two copies of a data item, one in the cache and
one in the main memory

I For a DMA input (from disk to memory) – the processor will be using stale data if that
location is also in the cache

I For a DMA output (from memory to disk) and a write-back cache – the I/O device will
receive stale data if the data is in the cache and has not yet been written back to the
memory

27 / 28



Coherency Problem

The coherency problem can be solved by

I Routing all I/O activity through the cache – expensive and a large negative
performance impact

I Having the OS invalidate all the entries in the cache for an I/O input or force
write-backs for an I/O output (called a cache flush)

I Providing hardware to selectively invalidate cache entries – i.e., need a snooping
cache controller

28 / 28


	Main Talk
	Introduction
	Bus
	Interrupt I/O
	Direct Memory Access (DMA)


