
CENG3420
Lecture 05: Datapath

Bei Yu

(Latest update: February 7, 2019)

Spring 2019

1 / 34

The Processor: Datapath & Control

I We’re ready to look at an implementation of the MIPS
I Simplified to contain only:

I Memory-reference instructions: lw, sw
I Arithmetic-logical instructions: add, addu, sub, subu, and, or, xor,

nor, slt, sltu
I Arithmetic-logical immediate instructions: addi, addiu, andi, ori, xori,

slti, sltiu
I Control flow instructions: beq, j

I Generic implementation:
I Use the program counter (PC)
I To supply the instruction address and fetch the instruction from

memory (and update the PC)
I Decode the instruction (and read registers)
I Execute the instruction

Fetch
PC = PC+4

DecodeExec

2 / 34

Abstract Implementation View

I Two types of functional units:
I elements that operate on data values (combinational)
I elements that contain state (sequential)

Address Instruction

Instruction
Memory

Write Data

Reg Addr

Reg Addr

Reg Addr

Register

File ALU
Data
Memory

Address

Write Data

Read DataPC

Read
Data

Read
Data

I Single cycle operation
I Split memory (Harvard) model - one memory for instructions and one for data

3 / 34

Fetching Instructions

1. Reading the instruction from the Instruction Memory
2. Updating the PC value to be the address of the next (sequential) instruction
3. PC is updated every clock cycle, so it does not need an explicit write control signal
4. Instruction Memory is read every clock cycle, so it doesn’t need an explicit read control

signal

Fetch
PC = PC+4

DecodeExec

clock

Read
Address Instruction

Instruction
Memory

Add

PC

4

4 / 34

Decoding Instructions

1. Sending the fetched instruction’s opcode and function field bits to the control unit
2. Reading two values from the Register File
3. (Register File addresses are contained in the instruction)

Fetch
PC = PC+4

DecodeExec Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

Control
Unit

5 / 34

Reading Registers “Just in Case”

I Both RegFile read ports are active for all instructions during the Decode cycle
I Using the rs and rt instruction field addresses
I Since haven’t decoded the instruction yet, don’t know what the instruction is
I Just in case the instruction uses values from the RegFile do “work ahead” by reading

the two source operands

Question
Which instructions do make use of the RegFile values?

6 / 34

Reading Registers “Just in Case”

I Both RegFile read ports are active for all instructions during the Decode cycle
I Using the rs and rt instruction field addresses
I Since haven’t decoded the instruction yet, don’t know what the instruction is
I Just in case the instruction uses values from the RegFile do “work ahead” by reading

the two source operands

Question
Which instructions do make use of the RegFile values?

6 / 34

EX-1
All instructions (except j) use the ALU after reading the registers. Please analyze
memory-reference, arithmetic, and control flow instructions.

7 / 34

Executing R Format Operations
R format operations: add, sub, slt, and, or

R-type:
31 25 20 15 5 0

op rs rt rd functshamt

10

I Perform operation (op and funct) on values in rs and rt
I Store the result back into the Register File (into location rd)
I Note that Register File is not written every cycle (e.g. sw), so we need an explicit write

control signal for the Register File

Fetch
PC = PC+4

DecodeExec

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

8 / 34

Consider the slt Instruction
I Remember the R format instruction slt

slt $t0, $s0, $s1 # if $s0 < $s1
then $t0 = 1
else $t0 = 0

I Where does the 1 (or 0) come from to store into $t0 in the Register File at the end of
the execute cycle?

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

9 / 34

Executing Load and Store Operations

I-Type: op rs rt address offset
31 25 20 15 0

Load and store operations have to
I compute a memory address by adding the base register (in rs) to the 16-bit signed

offset field in the instruction
I base register was read from the Register File during decode
I offset value in the low order 16 bits of the instruction must be sign extended to create a

32-bit signed value
I store value, read from the Register File during decode, must be written to the Data

Memory
I load value, read from the Data Memory, must be stored in the Register File

10 / 34

Executing Load and Store Operations (cont.)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

overflow
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

Sign
Extend

MemWrite

MemRead

16 32

11 / 34

Executing Branch Operations

I-Type: op rs rt address offset
31 25 20 15 0

Branch operations have to
I compare the operands read from the Register File during decode (rs and rt values)

for equality (zero ALU output)
I compute the branch target address by adding the updated PC to the sign

extended16-bit signed offset field in the instruction
I “base register” is the updated PC
I offset value in the low order 16 bits of the instruction must be sign extended to create a

32-bit signed value and then shifted left 2 bits to turn it into a word address

12 / 34

Executing Branch Operations (cont.)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

zero

ALU control

Sign
Extend16 32

Shift
left 2

Add

4 Add

PC

Branch
target
address

(to branch
control logic)

13 / 34

Executing Jump Operations

J-Type: op
31 25 0

jump target address

I Jump operations have to replace the lower 28 bits of the PC with the lower 26 bits of
the fetched instruction shifted left by 2 bits

Read
Address Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

14 / 34

Creating a Single Datapath from the Parts

I Assemble the datapath elements, add control lines as needed, and design the control
path

I Fetch, decode and execute each instruction in one clock cycle – single cycle design
I no datapath resource can be used more than once per instruction, so some must be

duplicated (e.g., why we have a separate Instruction Memory and Data Memory)
I to share datapath elements between two different instruction classes will need

multiplexors at the input of the shared elements with control lines to do the selection
I Cycle time is determined by length of the longest path

15 / 34

Multipilier Insertion

Read
Address Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign
Extend16 32

16 / 34

Multipilier Insertion

MemtoReg

Read
Address Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign
Extend16 32

ALUSrc

16 / 34

Clock Distribution

MemtoReg

Read
Address Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU control

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

System Clock

clock cycle

17 / 34

Adding the Branch Portion

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

MemtoRegALUSrc

Read
Address Instruction

Instruction
Memory

Add

PC

4 Shift
left 2

Add

PCSrc

18 / 34

Our Simple Control Structure

I We wait for everything to settle down
I ALU might not produce "right answer" right away
I Memory and RegFile reads are combinational (as are ALU, adders, muxes, shifter,

signextender)
I Use write signals along with the clock edge to determine when to write to the sequential

elements (to the PC, to the Register File and to the Data Memory)
I The clock cycle time is determined by the logic delay through the longest path
I (We are ignoring some details like register setup and hold times)

19 / 34

Summary: Adding the Control
I Selecting the operations to perform (ALU, Register File and Memory read/write)
I Controlling the flow of data (multiplexor inputs)
I Information comes from the 32 bits of the instruction

I-Type: op rs rt address offset
31 25 20 15 0

R-type:
31 25 20 15 5 0

op rs rt rd functshamt

10

Observations:
I op field always in bits 31-26
I address of two registers to be read are always specified by the rs and rt fields (bits

25–21 and 20–16)
I base register for lw and sw always in rs (bits 25–21)
I address of register to be written is in one of two places:

I in rt (bits 20–16) for lw;
I in rd (bits 15–11) for R-type instructions

I offset for beq, lw, and sw always in bits 15–0

20 / 34

(Almost) Complete Single Cycle Datapath

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr ALU

ovfzero

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Register

File

Read
Data 1

Read
Data 2

RegWrite

Sign
Extend16 32

MemtoRegALUSrc

Shift
left 2

Add

PCSrc

1
0

1
0

1

0

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

21 / 34

(Almost) Complete Single Cycle Datapath

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr ALU

ovfzero

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Register

File

Read
Data 1

Read
Data 2

RegWrite

Sign
Extend16 32

MemtoRegALUSrc

Shift
left 2

Add

PCSrc

1
0

RegDst

0

1

1
0

1

0

ALU
control

ALUOp
Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

21 / 34

ALU Control

ALU’s operation based on instruction type and function code∗

ALU control
input

Function

0000 and
0001 or
0010 xor
0011 nor
0110 add
1110 subtract
1111 set on less than

∗Notice that we are using different encodings than in the book
22 / 34

EX: ALU Control
Controlling the ALU uses of multiple decoding levels
I main control unit generates the ALUOp bits
I ALU control unit generates ALUcontrol bits

Instr op funct ALUOp action ALUcontrol
lw xxxxxx 00 add 0110
sw xxxxxx 00 add 0110
beq xxxxxx 01 subtract 1110
add 100000 10 add 0110
subt 100010 10 subtract 1110
and 100100 10 and 0000
or 100101 10 or 0001
xor 100110 10 xor 0010
nor 100111 10 nor 0011
slt 101010 10 slt 1111

23 / 34

ALU Control Truth Table

F5 F4 F3 F2 F1 F0 ALU
Op1

ALU
Op0

ALU
control3

ALU
control2

ALU
control1

ALU
control0

X X X X X X 0 0 0 1 1 0
X X X X X X 0 1 1 1 1 0
X X 0 0 0 0 1 0 0 1 1 0
X X 0 0 1 0 1 0 1 1 1 0
X X 0 1 0 0 1 0 0 0 0 0
X X 0 1 0 1 1 0 0 0 0 1
X X 0 1 1 0 1 0 0 0 1 0
X X 0 1 1 1 1 0 0 0 1 1
X X 1 0 1 0 1 0 1 1 1 1

24 / 34

ALU Control Truth Table

F5 F4 F3 F2 F1 F0 ALU
Op1

ALU
Op0

ALU
control3

ALU
control2

ALU
control1

ALU
control0

X X X X X X 0 0 0 1 1 0
X X X X X X 0 1 1 1 1 0
X X 0 0 0 0 1 0 0 1 1 0
X X 0 0 1 0 1 0 1 1 1 0
X X 0 1 0 0 1 0 0 0 0 0
X X 0 1 0 1 1 0 0 0 0 1
X X 0 1 1 0 1 0 0 0 1 0
X X 0 1 1 1 1 0 0 0 1 1
X X 1 0 1 0 1 0 1 1 1 1

Add/subt Mux control

24 / 34

ALU Control Logic
From the truth table can design the ALU Control logic

Instr[3]
Instr[2]
Instr[1]
Instr[0]
ALUOp1
ALUOp0

ALUcontrol3

ALUcontrol2

ALUcontrol1

ALUcontrol0

25 / 34

(Almost) Complete Datapath with Control Unit

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

26 / 34

(Almost) Complete Datapath with Control Unit

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0

0

1

26 / 34

(Almost) Complete Datapath with Control Unit

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0 1

0

26 / 34

(Almost) Complete Datapath with Control Unit

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0

1

1

26 / 34

(Almost) Complete Datapath with Control Unit

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

0

0

0

26 / 34

Main Control Unit

Instr RegDst ALUSrc MemReg RegWr MemRd MemWr Branch ALUOp

R-type
000000

1 0 0 1 0 0 0 10

lw
100011

0 1 1 1 1 0 0 00

sw
101011

X 1 X 0 0 1 0 00

beq
000100

X 0 X 0 0 0 1 01

27 / 34

Control Unit Logic
Instr[31]
Instr[30]
Instr[29]
Instr[28]
Instr[27]
Instr[26]

R-type lw sw beq
RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1
ALUOp0

28 / 34

Review: Executing Jump Operations

J-Type: op
31 25 0

jump target address

I Jump operations have to replace the lower 28 bits of the PC with the lower 26 bits of
the fetched instruction shifted left by 2 bits

Read
Address Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

29 / 34

Read
Address Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

Shift
left 2

0

1

Jump

32
Instr[25-0]

26
PC+4[31-28]

28

0 0

0

30 / 34

EX: Main Control Unit of j

Instr RegDst ALUSrc MemReg RegWr MemRd MemWr Branch ALUOp Jump

R-type
000000

1 0 0 1 0 0 0 10 0

lw
100011

0 1 1 1 1 0 0 00 0

sw
101011

X 1 X 0 0 1 0 00 0

beq
000100

X 0 X 0 0 0 1 01 0

j
000010

X X X 0 0 0 X XX 1

31 / 34

Single Cycle Implementation Cycle Time

I Unfortunately, though simple, the single cycle approach is not used because it is very
slow

I Clock cycle must have the same length for every instruction
I What is the longest path (slowest instruction)?

32 / 34

EX: Instruction Critical Paths
Calculate cycle time assuming negligible delays (for muxes, control unit, sign extend, PC
access, shift left 2, wires) except:
I Instruction and Data Memory (4 ns)
I ALU and adders (2 ns)
I Register File access (reads or writes) (1 ns)

Instr. I Mem Reg Rd ALU Op D Mem Reg Wr Total
R-
type
load
store
beq
jump

4 1 2 1 8

4 1 2 4 1 12
4 1 2 4 11
4 1 2 7
4 4

33 / 34

Single Cycle Disadvantages & Advantages

I Uses the clock cycle inefficiently – the clock cycle must be timed to accommodate the
slowest instr

I Especially problematic for more complex instructions like floating point multiply
I May be wasteful of area since some functional units (e.g., adders) must be duplicated

since they can not be shared during a clock cycle
I but It is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

34 / 34

