CENG3420 Homework 4

NO need to submit

Solutions

Q1 (25%) This question is about Amdahl's Law:

Speedup due to enhancement
$$E = \frac{1}{(1-F) + F/S}$$

where F is the fraction that can get speedup, while S is the speedup factor.

- 1. Consider an enhancement which runs 20 times faster but which is only usable 25% of the time. Calculate *E*.
- 2. Consider summing 100 scalar variables and two 10×10 matrices (matrix sum) on 10 processors. Calculate *E*.
- A1 1. According to the question F = 0.25, S = 20, substitute to the speedup equation,

$$E = \frac{1}{1 - 0.25 + 0.25/20} = 1.31.$$
 (1)

2. There are total 200 operations, where scalar operations are not parallelizable and matrix addition is parallelizable. Here F = 0.5, S = 10, and

$$E = \frac{1}{1 - 0.5 + 0.5/10} = 1.82.$$
 (2)

Q2 (25%) In the design of a multi-core processor, there are fixed on chip cache resources. We assume maximum of n cores can be designed with those resources. Let k be the real designed core number ($r = \frac{n}{k}$ is integer.) Define a speed up factor s(r) as sequential performance gain by using the resources equivalent to r cores to form a single core, and obviously s(1) = 1. Given f the fraction of software that is parallelizable across multiple cores, prove the speed up of the multi-core processor in terms of f, r, n, and s(r) is

$$S(f,r,n) = \frac{1}{\frac{1-f}{s(r)} + \frac{f \times r}{n \times s(r)}}$$
(3)

A2

$$S(f, r, n) = s(r) \times \frac{1}{(1-f) + \frac{f}{k}}$$

= $s(r) \times \frac{1}{(1-f) + \frac{f \times r}{n}}$
= $\frac{1}{\frac{1-f}{s(r)} + \frac{f \times r}{n \times s(r)}}.$ (4)

Q3 (25%) Consider the following portions of two different programs running at the same time on four processors in a share memory multiprocessor (SMP). Assume that before this code is run, both x and y are 0.

Core1: x = 3; Core2: y = 3; Core3: w = x + y + 1; Core4: z = x - y; Core5: r = w + z;

- 1. What are all the possible resulting values of w, x, y, z, and r? For each possible outcome, explain how we might arrive at those values.
- A3 1. As shown in the following table:

X	3	3	3	3	3	3	3	3	3
у	3	3	3	3	3	3	3	3	3
W	1	1	1	4	4	4	7	7	7
Z	0	-3	3	0	-3	3	0	-3	3
r	1	-2	4	4	1	7	7	4	10

Table 1: One correct column for 1 point

Q4 (25%) Given an original code as follows:

Loop:	L.D	F0,0 (R1)	; FO=array element
	ADD.D	F4, F0, F2	; add scalar in F2
	S.D	F4, 0 (R1)	; store result
	DADDUI	R1, R1, #-8	; decrement pointer 8 bytes
	BNE	R1, R2, Loop	; branch R1!=R2

- 1. Please revise the original code to the code with loop unrolling (4 times).
- 2. Based on the revised the code with loop unrolling, please revise the code with pipeline scheduling.

A4 (1)

Loop:						
L.D	F0, 0 (R1)					
ADD.D	F4, F0, F2					
S.D	F4, 0 (R1)	;	drop	DADUI 8	λ	BNE
L.D	F6, -8 (R1)					
ADD.D	F8, F6, F2					
S.D	F8, -8 (R1)	;	drop	DADDUI	&	BNE
L.D	F10, -16 (R1)					
ADD.D	F12, F10, F2					
S.D	F12, -16 (R1)	;	drop	DADDUI	&	BNE

L.D	F14,	-24	(R1)
ADD.D	F16,	F14	, F2
S.D	F16,	-24	(R1)
DADDUI	R1, 1	R1,	#-32
BNE	R1, 1	R2,	Loop

(2)

Loop:

-24