CENG3420 Homework 3

Due: Apr. 13, 2019

Please submit PDF or WORD document directly onto blackboard. DO NOT SUBMIT COMPRESSED ZIP or TARBALL.

Q1 (16\%) Suppose there is a byte addressable computer with main memory size 256 MB and a cache with 8 lines. Each cache line size is 64 B . Assume direct mapping in the memory hierarchy. Calculate the following items.

1. The total cache size (in bits).
2. The line number corresponding to the main memory address 3200_{10}.

Q2 (10\%) Assume it takes one clock to send address to DRAM memory and one clock to send data back. DRAM has 7 cycle latency for first byte, and 4 cycles for each of subsequent bytes in the block. To transfer a 8-byte block, calculate the cycle number if we need:

1. non-interleaving;
2. 4-module interleaving.

Q3 (15\%) Consider a cache works at $5 \times$ speed of main memory with hit rate of 95%. What is the speedup of the memory performance if such cache is used.

Q4 (14\%) There is a computer that has 256 MB byte-addressable main memory. Instructions and data are stored in separated caches, each of which has eight 64 B cache lines. The data cache use direct-mapping. Now there are two programs in the following form. Program A:

```
int a[256][256];
int sum_arrayl()
{
            int i,j,sum=0;
            for(i=0;i<256;i++)
                for(j=0;j<256;j++)
                                    sum += a[i][j];
            return sum;
    }
    Program B:
    int a[256][256];
    int sum_arrayl()
    {
            int i,j,sum=0;
            for(j=0;j<256;j++)
                        for(i=0;i<256;i++)
```

```
sum += a[i][j];
```

 return sum;
 \}

Suppose int data is represented in 32-bit 2's complement and i,j,sum are stored in specific registers. Arrays are stored in row-major with the start address 320_{10} in the main memory. Answer the following questions.

1. What are the line numbers of the main memory blocks that contain a [0] [31] and a [1] [1] respectively? (Cache line number starts from 0)
2. What are the data cache hit rates of program A and B?

Q5 (15\%) A byte-addressable computer uses 32-bit address to access main memory. Suppose the data cache contains 128 blocks and works in 4-way set-associative. Each block size is 64B with one "valid" bit.

1. (9%) How many bits in Tag, Index and Offset?
2. (6%) Calculate the total cache size (in bits).

Q6 (15\%) Describe two types of localities that are exhibited in memory hierarchy. Which locality is related to the cache replacement strategy "Least recently used"?

Q7 (15\%) There is a computer storage system that is byte addressable with virtual memory size 16 MB and main memory size 1 MB , page size is 4 KB . How many bits are there in the virtual address and how many bits of them are for virtual page number.

