
CENG3420
Lab 1-1: MIPS assembly language programing

Bei Yu

Department of Computer Science and Engineering
The Chinese University of Hong Kong

byu@cse.cuhk.edu.hk

Spring 2018

1 / 18

mailto:byu@cse.cuhk.edu.hk

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

2 / 18

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

3 / 18

What is SPIM

I SPIM is a MIPS32 simulator.
I Spim is a self-contained simulator that runs MIPS32 programs.
I It reads and executes assembly language programs written for this processor.
I Spim also provides a simple debugger and minimal set of operating system services.
I Spim does not execute binary (compiled) programs.

Dowload it here:
http://sourceforge.net/projects/spimsimulator/files/

3 / 18

http://sourceforge.net/projects/spimsimulator/files/

SPIM Overview

What SPIM looks like.
4 / 18

Register Panel and Memory Panel

There’s also a console window.
5 / 18

Operations

I Load a source file: File → Reinitialize and Load File
I Run the code: F5 or Press the green triangle button
I Single stepping: F10
I Breakpoint: in Text panel, right click on an address to set a breakpoint there.

6 / 18

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

7 / 18

Registers

I 32 general-purpose registers
I register preceded by $ in assembly language instruction
I two formats for addressing:

I using register number e.g. $0 through $31
I using equivalent names e.g. $t1, $sp

I special registers Lo and Hi used to store result of multiplication and division
I not directly addressable; contents accessed with special instruction mfhi (“move from

Hi”) and mflo (“move from Lo”)

7 / 18

Register Names and Descriptions

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

8 / 18

Data Types and Literals

Data types:
I Instructions are all 32 bits
I byte(8 bits), halfword (2 bytes), word (4 bytes)
I a character requires 1 byte of storage
I an integer requires 1 word (4 bytes) of storage
I Data types: .asciiz for string, .word for int, ...

Literals:
I numbers entered as is. e.g. 4
I characters enclosed in single quotes. e.g. ‘b’
I strings enclosed in double quotes. e.g. “A string”

9 / 18

Program Structure I
I Just plain text file with data declarations, program code (name of file should end in

suffix .s to be used with SPIM simulator)
I Data declaration section followed by program code section

Data Declarations

I Identified with assembler directive .data.
I Declares variable names used in program
I Storage allocated in main memory (RAM)
I <name>: .<datatype> <value>

10 / 18

Program Structure II
Code

I placed in section of text identified with assembler directive .text
I contains program code (instructions)
I starting point for code e.g. execution given label main:
I ending point of main code should use exit system call

Comments
anything following # on a line

11 / 18

Program Structure III

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.s
Bare-bones outline of MIPS assembly language program

.globl main

.data # variable declarations follow this line
...

.text # instructions follow this line

main: # indicates start of code
...

End of program, leave a blank line afterwards

12 / 18

An Example Program

I li: load immediate
I la: load address
I lw: load word from memory

13 / 18

More Information

For more information about MIPS instructions and assembly programing you can refer to:
1. Lecture slides and textbook.
2. http:

//www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

14 / 18

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

15 / 18

System calls in SPIM I
SPIM provides a small set of operating system-like services through the system call
(syscall) instruction.

15 / 18

System calls in SPIM II

To request a service, a program loads the system call code into register $v0 and arguments
into registers $a0-$a3(or $f12 for floating-point values). System calls that return values
put their results in register $v0 (or $f0 for floating-point results). Like this example:

Using system call

.data
str: .asciiz "the answer = " #labels always followed by colon

.text

li $v0, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string
li $v0, 1 # system call code for print_int
li $a0, 5 # integer to print
syscall # print it

16 / 18

Overview

SPIM

Assembly Programing

System Service in SPIM

Lab Assignment

17 / 18

Lab Assignment

Write an assembly program with the following requirements:
1. Define two variables var1 and var2 which have initial value 15 and 19, respectively.
2. Print var1 and var2.
3. Print RAM addresses of var1 and var2 using syscall.
4. Swap var1 and var2 and print them.

Submission Method:
Submit the source code and report after the whole Lab1, onto blackboard.

17 / 18

Some Tips

1. Variables should be declared following the .data identifier.
2. <name>: .<datatype> <value>

3. Use la instruction to access the RAM address of declared data.
4. Use system call to print integers.
5. Do not forget exit system call.

18 / 18

	Main Talk
	SPIM
	Assembly Programing
	System Service in SPIM
	Lab Assignment

