## Lecture 04: Performance

Name:

ID: $\qquad$

## EX-1

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than $B$ ?

## Solution:

## EX-1

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B ?

## Solution:

The performance ratio is $\frac{15}{10}=1.5$, so A is 1.5 times faster than B.

## EX-2: Improving Performance Example

A program runs on computer A with a 2 GHz clock in 10 seconds. What clock rate must a computer B has to run this program in 6 seconds? Unfortunately, to accomplish this, computer B will require 1.2 times as many clock cycles as computer A to run the program.

## Solution:

## EX-2: Improving Performance Example

A program runs on computer A with a 2 GHz clock in 10 seconds. What clock rate must a computer $B$ has to run this program in 6 seconds? Unfortunately, to accomplish this, computer B will require 1.2 times as many clock cycles as computer A to run the program.

## Solution:

We denote $x$ as clock cycle \# on computer A, $y$ as clock rate on computer B.

$$
\begin{cases}x & =10 \times 2 \times 10^{9}, \\ 1.2 x & =6 \times y .\end{cases}
$$

$\rightarrow y=4 \times 10^{9}=4 \mathrm{GHz}$.

## EX-3: Using the Performance Equation

Computers $A$ and $B$ implement the same ISA. Computer $A$ has a clock cycle time of 250 ps and an effective CPI of 2.0 for some program and computer B has a clock cycle time of 500 ps and an effective CPI of 1.2 for the same program. Which computer is faster and by how much?

## Solution:

## EX-3: Using the Performance Equation

Computers A and B implement the same ISA. Computer A has a clock cycle time of 250 ps and an effective CPI of 2.0 for some program and computer B has a clock cycle time of 500 ps and an effective CPI of 1.2 for the same program. Which computer is faster and by how much?

Solution: Assume each computer executes $I$ instructions, so

$$
\begin{aligned}
& \mathrm{CPU} \text { time }_{A}=I \times 2.0 \times 250=500 \times I \mathrm{ps} \\
& \mathrm{CPU} \mathrm{time} \\
& B
\end{aligned}=I \times 1.2 \times 500=600 \times I \mathrm{ps}
$$

A is faster by the ratio of execution times:

$$
\frac{\text { performance }_{A}}{\text { performance }_{B}}=\frac{\text { execution_time }_{B}}{\text { execution_time }_{A}}=\frac{600 \times I}{500 \times I}=1.2
$$

## EX-4

| Op | Freq | CPI $_{\mathrm{i}}$ | Freq $\times \mathrm{CPI}_{\mathrm{i}}$ |
| :--- | ---: | ---: | :--- |
| ALU | $50 \%$ | 1 |  |
| Load | $20 \%$ | 5 |  |
| Store | $10 \%$ | 3 |  |
| Branch | $20 \%$ | 2 |  |
|  |  |  |  |

- How much faster would the machine be if a better data cache reduced the average load time to 2 cycles?
- How does this compare with using branch prediction to shave a cycle off the branch time?
- What if two ALU instructions could be executed at once?


## Determinates of CPU Performance

CPU time $=$ Instruction count $\times \mathrm{CPI} \times$ clock cycle

|  | Instruction_ <br> count | CPI | clock_cycle |
| :--- | :--- | :--- | :--- |
| Algorithm |  |  |  |
| Programming <br> language |  |  |  |
| Compiler |  |  |  |
| ISA |  |  |  |
| Core <br> organization |  |  |  |
| Technology |  |  |  |

## Determinates of CPU Performance

CPU time $=$ Instruction count $\times \mathrm{CPI} \times$ clock cycle

|  | Instruction_ <br> count | CPI | clock_cycle |
| :--- | :---: | :---: | :---: |
| Algorithm | X | X |  |
| Programming <br> language | X | X |  |
| Compiler | X | X | X |
| ISA | X | X |  |
| Core <br> organization | X |  |  |
| Technology |  |  |  |

