Lecture 04: Performance

Name: _____

ID:

EX-1

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

Solution:

EX-1

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

Solution:

The performance ratio is $\frac{15}{10} = 1.5$, so A is 1.5 times faster than B.

EX-2: Improving Performance Example

A program runs on computer A with a 2 GHz clock in 10 seconds. What clock rate must a computer B has to run this program in 6 seconds? Unfortunately, to accomplish this, computer B will require 1.2 times as many clock cycles as computer A to run the program.

Solution:

EX-2: Improving Performance Example

A program runs on computer A with a 2 GHz clock in 10 seconds. What clock rate must a computer B has to run this program in 6 seconds? Unfortunately, to accomplish this, computer B will require 1.2 times as many clock cycles as computer A to run the program.

Solution:

We denote *x* as clock cycle # on computer A, *y* as clock rate on computer B.

$$\begin{cases} x = 10 \times 2 \times 10^9, \\ 1.2x = 6 \times y. \end{cases}$$

 \rightarrow y = 4 × 10⁹ = 4 GHz.

EX-3: Using the Performance Equation

Computers A and B implement the same ISA. Computer A has a clock cycle time of 250 ps and an effective CPI of 2.0 for some program and computer B has a clock cycle time of 500 ps and an effective CPI of 1.2 for the same program. Which computer is faster and by how much?

Solution:

EX-3: Using the Performance Equation

Computers A and B implement the same ISA. Computer A has a clock cycle time of 250 ps and an effective CPI of 2.0 for some program and computer B has a clock cycle time of 500 ps and an effective CPI of 1.2 for the same program. Which computer is faster and by how much?

Solution: Assume each computer executes *I* instructions, so

CPU time_A = $I \times 2.0 \times 250 = 500 \times I$ ps CPU time_B = $I \times 1.2 \times 500 = 600 \times I$ ps

A is faster by the ratio of execution times:

 $\frac{\text{performance}_{A}}{\text{performance}_{B}} = \frac{\text{execution_time}_{B}}{\text{execution_time}_{A}} = \frac{600 \times I}{500 \times I} = 1.2$

EX-4

Ор	Freq	CPI _i	Freq x CPI _i
ALU	50%	1	
Load	20%	5	
Store	10%	3	
Branch	20%	2	
			Σ=

- How much faster would the machine be if a better data cache reduced the average load time to 2 cycles?
- How does this compare with using branch prediction to shave a cycle off the branch time?
- What if two ALU instructions could be executed at once?

Determinates of CPU Performance

CPU time = Instruction count \times CPI \times clock cycle

	Instruction_ count	CPI	clock_cycle
Algorithm			
Programming language			
Compiler			
ISA			
Core organization			
Technology			

Determinates of CPU Performance

CPU time = Instruction count \times CPI \times clock cycle

	Instruction_ count	CPI	clock_cycle
Algorithm	x	X	
Programming language	x	X	
Compiler	x	X	
ISA	x	X	x
Core organization		X	x
Technology			x