香港中文大學
The Chinese University of Hong Kong

CENG 3420 Lecture 02：Digital Logic Review

Bei Yu

byu＠cse．cuhk．edu．hk

Review: Major Components of a Computer

Review: The Instruction Set Architecture (ISA)

The interface description separating the software and hardware

Analog vs. Digital

Analog Signal

\square Vary in a smooth way over time
\square Analog data are continuous valued

- Example: audio, video

\rightarrow Time

Amplitude
(volts) 4

Digital Signal

\square Maintains a constant level then changes to another constant level (generally operate in one of the two states)
\square Digital data are discrete valued

- Example: computer data

Number Systems

- An ordered set of symbols, called digits, with relations defined for addition, subtraction, multiplication, and division
\square Radix or base of the number system is the total number of digits allowed in the number system
\square Commonly used numeral systems

System Name	Decimal	Binary	Octal	Hexadecimal
Radix	10	2	8	16
First seventeen	0	0	0	0
positive integers	1	1	1	1
	2	10	2	2
	3	11	3	3
	4	100	4	4
	5	101	5	5
	6	110	6	6
	7	111	7	7
	8	1000	10	8
	9	1001	11	9
	11	1010	12	A
	12	1011	13	B
	13	1100	14	C
	1101	15	D	E
	13	1110	16	F
	15	111	17	10

Conversion from Decimal Integer

\square Step 1: Divide the decimal number by the radix (number base)
\square Step 2: Save the remainder (first remainder is the least significant digit)
\square Repeat steps 1 and 2 until the quotient is zero
\square Result is in reverse order of remainders

EX: L02-1

- EX1: Convert 36_{8} to binary value
\square EX2: Convert 36_{10} to binary value

Unsigned Binary Representation

Hex	Binary	Decimal
$0 x 00000000$	$0 \ldots 0000$	0
$0 x 00000001$	$0 \ldots 0001$	1
$0 x 00000002$	$0 \ldots 0010$	2
$0 x 00000003$	$0 \ldots 0011$	3
$0 x 00000004$	$0 \ldots 0100$	4
$0 x 00000005$	$0 \ldots 0101$	5
$0 x 00000006$	$0 \ldots 0110$	6
$0 x 00000007$	$0 \ldots 0111$	7
$0 x 00000008$	$0 \ldots 1000$	8
$0 x 00000009$	$0 \ldots 1001$	9
	\ldots	
$0 x F F F F F F F C$	$1 \ldots 1100$	$2^{32}-4$
$0 x F F F F F F F D$	$1 \ldots 1101$	$2^{32}-3$
$0 x F F F F F F F E$	$1 \ldots 1110$	$2^{32}-2$
$0 x F F F F F F F F$	$1 \ldots 1111$	$2^{32}-1$

Signed Binary Representation

$\begin{array}{r} -2^{3}= \\ -\left(2^{3}-1\right)= \end{array}$	2'sc binary	decimal
	1000	-8
	1001	-7
complement all the bits	(1010)	-6
	$\rightarrow 1011$	-5
	1100	-4
01011011	1101	-3
	1110	-2
and add a 1	1111	-1
and add a 1	0000	0
01101010	0001	1
	0010	2
complement all the bits	0011	3
	0100	4
	0101	5
	$\rightarrow 0110$	6
CENG3420 L02 Digital Logic. $10 \quad 2^{3}-1=$	0111	7

EX: L02-2

\square For an n-bit signed binary numeral system, what's the largest positive number and the smallest negative number?

Digital Signal Representation

- Active HIGH
- High voltage means On
- Active LOW
- Low voltage means On

Logic 0	Logic 1
False	True
Off	On
LOW	HIGH
No	Yes
Open switch	Closed switch

Logic Gates

What is the schematic view of an AND gate?

EX: L02-3

\square Please draw NOR gate schematic view

Truth Table

\square A means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs
\square The number of input combinations will equal 2^{N} for an N -input truth table

	Inputs		Output
	A	B	Y
A - Logic	0	0	0
B Circuit $-Y$	0	1	0
	1	0	0
	1	1	1

EX: L02-4

Determine the true table of a three-input AND gate

Digital Circuits

- Digital circuits generally contain two parts:
- Combinational logic
- Sequential logic
- Combinational circuits consist of logic gates with inputs and outputs
- The outputs at any instance of time depend only on the combination of the input values based on logic operations such as AND, OR etc.
- Sequential circuits, in addition to inputs and outputs also have storage elements, therefore the output depends on both the current inputs as well as the stored values

Combinational Circuits

$$
Z=F(X)
$$

In combinational circuits, the output at any time is a direct function of the applied external inputs

Design Procedure of Combinational Circuits

EX: L02-5

\square Implement $\mathrm{AB}+\mathrm{CD}$ using NAND gates only

Propagation Delay

\square The delay when the signal arrives at the input of a circuit, and when the output of the circuit changes, is called the propagation delay
\square A circuit is considered to be fast, if its propagation delay is small (ideally as close to 0 as possible)

Timing Diagram

\square The inputs to a circuit can be changed over time.
\square The timing diagram shows the values of the input signals to a circuit with the passage of time, in the form of a waveform
\square It also shows a waveform for the output

Power Consumption

Fanin

\square Fanin of a gate is the number of inputs to the gate
\square For a 3-input OR gate, the fanin = 3
\square There is a limitation on the fanin for any gate
\square In CMOS IC technology, higher fanin implies slower gates (higher propagation delays)

Fanout

\square Fanout is the number of gates that can be driven by a driver gate
\square The driven gate is called the load gate
\square There is a limit to the number of load gates that can be driven by a driver gate

Buffers

\square Buffers have a single input and a single output, where output = input
\square Buffers help increase the driving capability of a circuit by increasing the fanout
\square Drive strength: how much load a gate can drive
\square Greater drive strength, fanout gates (dis)charged quickly

How to increase drive strength?

\square Reduce resistance -> Increase output current

- Increase transistor size with gate
- Parallel a number of transistors

NAND

Decoder

\square Information is represented by binary codes
\square Decoding - the conversion of an n-bit input code to an m-bit output code with $n<=m<=2^{n}$ such that each valid code word produces a unique output code
\square Circuits that perform decoding are called decoders
\square A decoder is a minterm generator

Decoder (Use Cases)

- Decode a 3-bit op-codes:
\square Home automation:

Load a
Add b
Store c

Decoder-Based Circuits

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{C}	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
S=\Sigma(1,2,4,7)
$$

$$
C=\sum(3,5,6,7)
$$

3 inputs and 8 possible minterms
3 -to- 8 decoder can be used for implementing this circuit

Src: Mano's book

Encoder

2^{n} inputs

\square Encoding - the opposite of decoding - the conversion of an m-bit input code to an n-bit output code such that each valid code word produces a unique output code
\square Circuits that perform encoding are called encoders
\square An encoder has 2^{n} (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
\square Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Multiplexers

\square Directs one of 2^{n} input to the output
\square Input to output direction is done based on a set of n select bits

MUX-based Design (n-1 Select lines)

A	B	C	F	
0	0	0	0	$\mathrm{~F}=\mathrm{C}$
0	0	1	1	
0	1	0	1	$\mathrm{~F}=\mathrm{C}$,
0	1	1	0	
1	0	0	0	$\mathrm{~F}=0$
1	0	1	0	
1	1	0	1	$\mathrm{~F}=1$
1	1	1	1	

Combinational vs Sequential

\square A combinational circuit:
\square At any time, outputs depend only on inputs

- Changing inputs changes outputs
\square History is ignored!

Combinational vs Sequential

\square A sequential circuit:
\square outputs depend on inputs and previous inputs

- Previous inputs are stored as binary information into memory
- The stored information at any time defines a state
\square next state depends on inputs and present state

Examples of sequential systems

Traffic light

ATM

Vending machine

Types of Sequential Circuits

\square Two types of sequential circuits:

- Synchronous: The behavior of the circuit depends on the input signal values at discrete intervals of time (also called clocked)
- Asynchronous: The behavior of the circuit depends on the order of change of the input signals at any instance of time (continuous)

Design A Latch

\square Store one bit of information: cross-coupled invertor

\square How to change the value stored?

EX: L02-6

\square What's the Q value based on different R, S inputs?

$\square S=R=1$:
$\square S=0, R=1$:
$\square S=1, R=0$:
$\square S=R=0$:

Design A Flip-Flop

\square Based on Gated Latch

\square Master-slave positive-edge-triggered D flip-flop

Latch and Flip-Flop

\square Latch is level-sensitive
\square Flip-flop is edge triggered

Timing Diagrams (optional)

Contamination and
 Propagation Delays

$t_{p d}$	Logic Prop. Delay
$t_{c d}$	Logic Cont. Delay
$t_{p c q}$	Latch/Flop Clk-Q Prop Delay
$t_{c c q}$	Latch/Flop Clk-Q Cont. Delay
$t_{p d q}$	Latch D-Q Prop Delay
$t_{p c q}$	Latch D-Q Cont. Delay
$t_{\text {setup }}$	Latch/Flop Setup Time
$t_{\text {hold }}$	Latch/Flop Hold Time

Registers

\square A register is a group of flip-flops.
\square An n-bit register is made of n flip-flips and can store n bits
\square A register may have additional combinational gates to perform certain operations

4-Bit Register

\square A simple 4-bit register can be made with 4 D-FF
\square Common Clock

- At each positive-edge, 4 bits are loaded in parallel
- Previous data is overwritten
\square Common Clear
- Asynchronous clear
- When Clear $=0$, all FFs are cleared; i.e. 0 is stored.

4-bit Shift Register

Serial-in and Serial-out (SISO)

\square A simple 4-bit shift register can be made with 4 D-FF

- Common Clock
- At each positive-edge, 1 bit is shifted in
- Rightmost bit is discarded
\square Which direction this register is shifting?

Universal Shift Register (cont.)

Mode Control		
$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{0}}$	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

